Bayesian inference of ocean diffusivity from Lagrangian trajectory data

被引:10
|
作者
Ying, Y. K. [1 ,2 ]
Maddison, J. R. [1 ,2 ]
Vanneste, J. [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
Bayesian inference; Lagrangian particles; Ocean diffusivity; Stochastic differential equations; Markov Chain Monte Carlo; EDDY DIFFUSIVITY; TRANSPORT; CONVERGENCE; CIRCULATION; STATISTICS; DISPERSION; MODELS;
D O I
10.1016/j.ocemod.2019.101401
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A Bayesian approach is developed for the inference of an eddy-diffusivity field from Lagrangian trajectory data. The motion of Lagrangian particles is modelled by a stochastic differential equation associated with the advection-diffusion equation. An inference scheme is constructed for the unknown parameters that appear in this equation, namely the mean velocity, velocity gradient, and diffusivity tensor. The scheme provides a posterior probability distribution for these parameters, which is sampled using the Metropolis-Hastings algorithm. The approach is applied first to a simple periodic flow, for which the results are compared with the prediction from homogenisation theory, and then to trajectories in a three-layer quasigeostrophic double-gyre simulation. The statistics of the inferred diffusivity tensor are examined for varying sampling interval and compared with a standard diagnostic of ocean diffusivity. The Bayesian approach proves capable of estimating spatially-variable anisotropic diffusivity fields from a relatively modest amount of data while providing a measure of the uncertainty of the estimates. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Bayesian Inference of Stochastic Pursuit Models from Basketball Tracking Data
    Bhat, Harish S.
    Madushani, R. W. M. A.
    Rawat, Shagun
    BAYESIAN STATISTICS IN ACTION, BAYSM 2016, 2017, 194 : 127 - 137
  • [42] Bayesian inference from type II doubly censored Rayleigh data
    Fernández, AJ
    STATISTICS & PROBABILITY LETTERS, 2000, 48 (04) : 393 - 399
  • [43] Bayesian inference of protein conformational ensembles from limited structural data
    Potrzebowski, Wojciech
    Trewhella, Jill
    Andre, Ingemar
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)
  • [44] Causal inference and Bayesian network structure learning from nominal data
    Luo, Guiming
    Zhao, Boxu
    Du, Shiyuan
    APPLIED INTELLIGENCE, 2019, 49 (01) : 253 - 264
  • [46] Bayesian inference of chemical exposures from NHANES urine biomonitoring data
    Zachary Stanfield
    R. Woodrow Setzer
    Victoria Hull
    Risa R. Sayre
    Kristin K. Isaacs
    John F. Wambaugh
    Journal of Exposure Science & Environmental Epidemiology, 2022, 32 : 833 - 846
  • [47] Bayesian Inference from Count Data Using Discrete Uniform Priors
    Comoglio, Federico
    Fracchia, Letizia
    Rinaldi, Maurizio
    PLOS ONE, 2013, 8 (10):
  • [48] Bayesian inference of chemical exposures from NHANES urine biomonitoring data
    Stanfield, Zachary
    Setzer, R. Woodrow
    Hull, Victoria
    Sayre, Risa R.
    Isaacs, Kristin K.
    Wambaugh, John F.
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2022, 32 (06) : 833 - 846
  • [49] Bayesian inference on stochastic gene transcription from flow cytometry data
    Tiberi, Simone
    Walsh, Mark
    Cavallaro, Massimo
    Hebenstreit, Daniel
    Finkenstadt, Barbel
    BIOINFORMATICS, 2018, 34 (17) : 647 - 655
  • [50] A Probabilistic Lifestyle-Based Trajectory Model for Social Strength Inference from Human Trajectory Data
    Zhao, Wayne Xin
    Zhou, Ningnan
    Zhang, Wenhui
    Wen, Ji-Rong
    Wang, Shan
    Chang, Edward Y.
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2016, 35 (01)