Prediction of solubility for polycyclic aromatic hydrocarbons in supercritical carbon dioxide using wavelet neural networks in quantitative structure property relationship

被引:35
|
作者
Khayamian, T [1 ]
Esteki, M [1 ]
机构
[1] Isfahan Univ Technol, Dept Chem, Esfahan 84154, Iran
来源
JOURNAL OF SUPERCRITICAL FLUIDS | 2004年 / 32卷 / 1-3期
关键词
polycyclic aromatic hydrocarbons; SC-CO2; solubility; WNN; QSPR;
D O I
10.1016/j.supflu.2004.02.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a wavelet neural network (WNN) model is proposed to predict the solubility of naphthalene, biphenyl, fluorene, phenanthrene and triphenylene in supercritical carbon dioxide (SC-CO2) over a temperature range of 308-333 K and a pressure range of 80-135 bar for the first time. The WNN model was constructed in quantitative structure property relationship (QSPR) using six descriptors consisting of temperature, pressure, volume of the molecule, highest occupied molecular orbital (HOMO), dipole moment and number of double bonds in the molecules. These descriptors are selected, in a stepwise manner, from many different descriptors using multiple linear regression (MLR) method. The capability of the model was evaluated by plotting experimental values of solubility against the predicted values by the model for the prediction set. The large correlation coefficient 0.996, large value of F, 1947, and a small standard error of 0.087 reveals the capability of the model. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [21] Linear and nonlinear quantitative structure-property relationship models for solubility of some anthraquinone, anthrone and xanthone derivatives in supercritical carbon dioxide
    Hemmateenejad, Bahram
    Shamsipur, Mojtaba
    Miri, Ramin
    Elyasi, Maryam
    Foroghinia, Farzaneh
    Sharghi, Hashem
    ANALYTICA CHIMICA ACTA, 2008, 610 (01) : 25 - 34
  • [22] Quantitative structure-property relationship (QSPR) study to predict retention time of polycyclic aromatic hydrocarbons using the random forest and artificial neural network methods
    Emrarian, Moona
    Sohrabi, Mahmoud Reza
    Goudarzi, Nasser
    Tadayon, Fariba
    STRUCTURAL CHEMISTRY, 2020, 31 (04) : 1281 - 1288
  • [23] Quantitative structure-property relationship (QSPR) study to predict retention time of polycyclic aromatic hydrocarbons using the random forest and artificial neural network methods
    Moona Emrarian
    Mahmoud Reza Sohrabi
    Nasser Goudarzi
    Fariba Tadayon
    Structural Chemistry, 2020, 31 : 1281 - 1288
  • [24] Quantitative structure-property relationship studies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol
    Chen, JW
    Quan, X
    Yan, Y
    Yang, FL
    Peijnenburg, WJGM
    CHEMOSPHERE, 2001, 42 (03) : 263 - 270
  • [25] COMPUTER-ASSISTED RETENTION PREDICTION OF POLYCYCLIC AROMATIC-HYDROCARBONS IN SUPERCRITICAL FLUID CHROMATOGRAPHY USING CARBON-DIOXIDE AS THE MOBILE PHASE
    JINNO, K
    KUWAJIMA, M
    CHROMATOGRAPHIA, 1987, 23 (09) : 631 - 638
  • [26] Diffusion coefficients of polycyclic aromatic hydrocarbons in supercritical carbon dioxide: A molecular dynamics simulation study
    Wang, Junying
    Tian, Ke
    Li, Yi
    Wang, Weizuo
    Jin, Hui
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 409
  • [27] Prediction of aqueous solubility of organic compounds using a quantitative structure-property relationship
    Chen, XQ
    Cho, SJ
    Li, Y
    Venkatesh, S
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 91 (08) : 1838 - 1852
  • [28] Monte Carlo simulation for solubilities of polycyclic aromatic hydrocarbons in supercritical carbon dioxide Lennard-Jones potentials for supercritical carbon dioxide plus polycyclic aromatic hydrocarbon systems from benzene to graphite
    Iwai, Y
    Mori, Y
    Arai, Y
    FLUID PHASE EQUILIBRIA, 2000, 167 (01) : 33 - 40
  • [29] Comparison of Genetic Algorithm Based Support Vector Machine and Genetic Algorithm Based RBF Neural Network in Quantitative Structure-Property Relationship Models on Aqueous Solubility of Polycyclic Aromatic Hydrocarbons
    Qi Jun
    Sun Chang-Hong
    Wei Jia
    INTERNATIONAL CONFERENCE ON ECOLOGICAL INFORMATICS AND ECOSYSTEM CONSERVATION (ISEIS 2010), 2010, 2 : 1429 - 1437
  • [30] Prediction of Henry's law constants by a quantitative structure property relationship and neural networks
    English, NJ
    Carroll, DG
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (05): : 1150 - 1161