Prediction of solubility for polycyclic aromatic hydrocarbons in supercritical carbon dioxide using wavelet neural networks in quantitative structure property relationship

被引:35
|
作者
Khayamian, T [1 ]
Esteki, M [1 ]
机构
[1] Isfahan Univ Technol, Dept Chem, Esfahan 84154, Iran
来源
JOURNAL OF SUPERCRITICAL FLUIDS | 2004年 / 32卷 / 1-3期
关键词
polycyclic aromatic hydrocarbons; SC-CO2; solubility; WNN; QSPR;
D O I
10.1016/j.supflu.2004.02.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a wavelet neural network (WNN) model is proposed to predict the solubility of naphthalene, biphenyl, fluorene, phenanthrene and triphenylene in supercritical carbon dioxide (SC-CO2) over a temperature range of 308-333 K and a pressure range of 80-135 bar for the first time. The WNN model was constructed in quantitative structure property relationship (QSPR) using six descriptors consisting of temperature, pressure, volume of the molecule, highest occupied molecular orbital (HOMO), dipole moment and number of double bonds in the molecules. These descriptors are selected, in a stepwise manner, from many different descriptors using multiple linear regression (MLR) method. The capability of the model was evaluated by plotting experimental values of solubility against the predicted values by the model for the prediction set. The large correlation coefficient 0.996, large value of F, 1947, and a small standard error of 0.087 reveals the capability of the model. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [1] Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide
    Yamini, Y
    Bahramifar, N
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2000, 45 (01): : 53 - 56
  • [2] Application of KNN and Semi-Empirical Models for Prediction of Polycyclic Aromatic Hydrocarbons Solubility in Supercritical Carbon Dioxide
    Lashkenari, Mohammad Soleimani
    KhazaiePoul, Ahmad
    POLYCYCLIC AROMATIC COMPOUNDS, 2017, 37 (05) : 415 - 425
  • [3] Prediction of Aqueous Solubility of Hydrocarbons Using A Quantitative Structure-Property Relationship
    Wang Keqiang(Department of Chemistry
    南都学坛, 1998, (03) : 41 - 44
  • [4] Solubility of polynuclear aromatic hydrocarbons in supercritical carbon dioxide
    Andrews, AT
    Ahlert, RC
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2001, 36 (01): : 89 - 100
  • [5] Modeling solubility in supercritical carbon dioxide using quantitative structure-property relationships
    Valenzuela, Loreto M.
    Reveco-Chilla, Andrea G.
    del Valle, Jose M.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2014, 94 : 113 - 122
  • [6] Solubility prediction of 21 azo dyes in supercritical carbon dioxide using wavelet neural network
    Tabaraki, R.
    Khayamian, T.
    Ensafi, A. A.
    DYES AND PIGMENTS, 2007, 73 (02) : 230 - 238
  • [7] Quantitative Structure-Property Relationship: XXII. Polycyclic Aromatic Hydrocarbons
    I. B. Golovanov
    S. M. Zhenodarova
    Russian Journal of General Chemistry, 2005, 75 : 1790 - 1794
  • [8] Quantitative structure-property relationship: XXII. Polycyclic aromatic hydrocarbons
    Golovanov, IB
    Zhenodarova, SM
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2005, 75 (11) : 1790 - 1794
  • [9] Solubility prediction of drugs in supercritical carbon dioxide using artificial neural network
    Jouyban, Abolghasem
    Soltani, Somaieh
    Zeynali, Karim Asadpour
    IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH, 2007, 6 (04): : 243 - 250
  • [10] Quantitative Structure-Property Relationships for Drug Solubility Prediction Using Evolved Neural Networks
    Cheung, Mars
    Johnson, Stephen
    Hecht, David
    Fogel, Gary B.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 688 - +