Optimized treatment of fibromyalgia using system identification and hybrid model predictive control

被引:18
|
作者
Deshpande, Sunil [1 ]
Nandola, Naresh N. [1 ]
Rivera, Daniel E. [1 ]
Younger, Jarred W. [2 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Control Syst Engn Lab, Tempe, AZ 85287 USA
[2] Univ Alabama Birmingham, Dept Psychol, Birmingham, AL 35294 USA
基金
美国国家卫生研究院;
关键词
Optimized adaptive behavioral interventions; Fibromyalgia; System identification; Hybrid model predictive control; Biomedical applications; LOW-DOSE NALTREXONE; ADAPTIVE INTERVENTIONS; CRITERIA; DESIGN;
D O I
10.1016/j.conengprac.2014.09.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The term adaptive intervention is used in behavioral health to describe individually tailored strategies for preventing and treating chronic, relapsing disorders. This paper describes a system identification approach for developing dynamical models from clinical data, and subsequently, a hybrid model predictive control scheme for assigning dosages of naltrexone as treatment for fibromyalgia, a chronic pain condition. A simulation study that includes conditions of significant plant-model mismatch demonstrates the benefits of hybrid predictive control as a decision framework for optimized adaptive interventions. This work provides insights on the design of novel personalized interventions for chronic pain and related conditions in behavioral health. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 173
页数:13
相关论文
共 50 条
  • [41] Constrained model predictive control with simultaneous identification using wavelets
    Feng, WY
    Genceli, H
    Nikolaou, M
    COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 : S1011 - S1016
  • [42] System Identification and Model Predictive Control Design of Toner Supply System of Photocopier
    Nagai, Shoko
    Muroi, Hideo
    Takeshita, Yu
    Komatsu, Makoto
    Kato, Shinji
    Adachi, Shuichi
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1185 - 1190
  • [43] Modeling and Control of an Indirect Solar Dryer in Forced Convection Mode Using System Identification and Model Predictive Control
    Rafiq, M. Mohamed
    Vasanthi, S.
    Nagalakshmi, S.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024,
  • [44] Optimized model predictive control of commercial BTX plant using profite controller
    Yoo, S. C.
    Kim, T. G.
    Choi, B. G.
    Ahn, S. M.
    Yoon, J. K.
    Seo, S. T.
    Kim, H. S.
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 5703 - +
  • [45] Model Predictive Control-Based Optimized Operation of a Hybrid Charging Station for Electric Vehicles
    Gonzalez-Rivera, Enrique
    Garcia-Trivino, Pablo
    Sarrias-Mena, Raul
    Torreglosa, Juan P.
    Jurado, Francisco
    Fernandez-Ramirez, Luis M.
    IEEE ACCESS, 2021, 9 : 115766 - 115776
  • [46] A hybrid fuzzy model for model predictive control
    Karer, Gorazd
    Mušič, Gašper
    Škrjanc, Igor
    Zupančič, Borut
    Elektrotehniski Vestnik/Electrotechnical Review, 2007, 74 (1-2): : 73 - 78
  • [47] Model Predictive and Iterative Learning Control Based Hybrid Control Method for Hybrid Energy Storage System
    Zhang, Xibeng
    Wang, Benfei
    Gamage, Don
    Ukil, Abhisek
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (04) : 2146 - 2158
  • [48] A hybrid fuzzy model for model predictive control
    Karer, Gorazd
    Music, Gasper
    Skrjanc, Igor
    Zupancic, Borut
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2007, 74 (1-2): : 73 - 78
  • [49] Optimal operation of electrical heating system with hybrid model predictive control
    Loehr, Yannik
    Moennigmann, Martin
    IFAC PAPERSONLINE, 2018, 51 (28): : 274 - 279
  • [50] Hybrid nonlinear model-predictive control of a supermarket refrigeration system
    Sonntag, Christian
    Devanathan, Arvind
    Engell, Sebastian
    Stursberg, Olaf
    PROCEEDINGS OF THE 2007 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-3, 2007, : 1227 - +