Quantifying the impact of heat loss, stretch and preferential diffusion effects to the anchoring of bluff body stabilized premixed flames

被引:28
|
作者
Vance, F. H. [1 ]
Shoshin, Y. [1 ]
de Goey, L. P. H. [1 ]
van Oijen, J. A. [1 ]
机构
[1] Eindhoven Univ Technol, Mech Engn, Eindhoven, Netherlands
关键词
Bluff body flame; Preferential diffusion; Flame stretch; Flame anchoring; Heat loss; HYDROGEN ADDITION; INVERTED FLAMES; LEWIS NUMBER; MECHANISM; TRANSPORT; TEMPERATURE; COMBUSTION; BLOWOFF;
D O I
10.1016/j.combustflame.2021.111729
中图分类号
O414.1 [热力学];
学科分类号
摘要
The response of a premixed flame subjected to either flame stretch (and associated Lewis number effects) or heat loss has been well documented in the literature and has enabled a good understanding of canonical configurations such as flat burner-stabilized, counter flow and tubular flames. However, in practical burners, flames are simultaneously subjected to stretch, heat transfer with the flame holder and preferential diffusion effects. For such flames, usually the collective effect of underlying contributions is studied and individual effects are only treated in a qualitative manner. In this paper, our objective is to use flame stretch theory to separate and quantify the underlying contributions from flame stretch, preferential diffusion and heat transfer with the flame holder to the flame speed of bluff body stabilized flames. It is shown that the theory adequately predicts the flame displacement speed in comparison to the results from the numerical simulations. Using the quantification of contributions, an overall stabilization mechanism for H-2 enriched CH4-air mixtures is discussed. The role of competing contributions from preferential diffusion and heat loss is highlighted especially near the flame base region where the flame speed is heavily impacted by all the effects. Insights are also given for low Lewis number flashback prone flames. (C)& nbsp;2021 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute.& nbsp;
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Effects of free stream flow turbulence on blowoff characteristics of bluff-body stabilized premixed flames
    Chowdhury, Bikram R.
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2018, 190 : 302 - 316
  • [22] Characteristics of hollow bluff body-stabilized natural gas-air premixed flames with heat recirculation
    Hamed, A. M.
    Kamal, M. M.
    Hussin, A. E.
    FUEL, 2023, 333
  • [23] Effects of stretch and preferential diffusion on tip opening of laminar premixed Bunsen flames of syngas/air mixtures
    Wang, Jinhua
    Wei, Zhilong
    Yu, Senbin
    Jin, Wu
    Xie, Yongliang
    Zhang, Meng
    Huang, Zuohua
    FUEL, 2015, 148 : 1 - 8
  • [24] Impact of swirl and bluff-body on the transfer function of premixed flames
    Gatti, M.
    Gaudron, R.
    Mirat, C.
    Zimmer, L.
    Schuller, T.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (04) : 5197 - 5204
  • [25] Experimental studies of bluff-body stabilized LPG diffusion flames
    Mishra, D. P.
    Kiran, D. Y.
    FUEL, 2009, 88 (03) : 573 - 578
  • [26] On the Flame-generated Vorticity Dynamics of Bluff-body-stabilized Premixed Flames
    Marissa K. Geikie
    Zakery R. Carr
    Kareem A. Ahmed
    David J. Forliti
    Flow, Turbulence and Combustion, 2017, 99 : 487 - 509
  • [27] Dynamics of bluff-body-stabilized premixed hydrogen/air flames in a narrow channel
    Lee, Bok Jik
    Yoo, Chun Sang
    Im, Hong G.
    COMBUSTION AND FLAME, 2015, 162 (06) : 2602 - 2609
  • [28] On the Flame-generated Vorticity Dynamics of Bluff-body-stabilized Premixed Flames
    Geikie, Marissa K.
    Carr, Zakery R.
    Ahmed, Kareem A.
    Forliti, David J.
    FLOW TURBULENCE AND COMBUSTION, 2017, 99 (02) : 487 - 509
  • [29] The influence of spanwise nonuniformity on lean blowoff in bluff body stabilized turbulent premixed flames * , **
    Fugger, Christopher A.
    Caswell, Andrew W.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (04) : 6327 - 6335
  • [30] Hollow bluff body-stabilized natural gas-air premixed flames
    Hamed, A. M.
    Kamal, M. M.
    Abd ElHameed, M.
    Aboelsoud, W.
    Hussin, A. E.
    FUEL, 2023, 334