A note on the convergence behavior of GMRES

被引:8
|
作者
Cao, ZH
机构
[1] Department of Mathematics, Fudan University
关键词
nonsymmetric linear systems; GMRES; FOM; Arnoldi's method; convergence behavior; Ritz values; quasi-Ritz values;
D O I
10.1016/S0168-9274(97)00039-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we generalize the results on the convergence behavior of GMRES for solving symmetric linear systems as discussed by Paige et al. (1995) to for solving nonsymmetric linear systems. Moreover, we show that the weak point in the comparison process, which was used by van der Vorst and Vuik (1993) to study superlinear convergence behavior, can be overcome easily. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [41] A note on preconditioned GMRES for solving singular linear systems
    Naimin Zhang
    BIT Numerical Mathematics, 2010, 50 : 207 - 220
  • [42] The Influence of Reordering Algorithms on the Convergence of a Preconditioned Restarted GMRES Method
    de Oliveira, S. L. Gonzaga
    Carvalho, C.
    Osthoff, C.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I, 2020, 12249 : 19 - 32
  • [43] Deflation Strategies to Improve the Convergence of Communication-Avoiding GMRES
    Yamazaki, Ichitaro
    Tomov, Stanimire
    Dongarra, Jack
    2014 5TH WORKSHOP ON LATEST ADVANCES IN SCALABLE ALGORITHMS FOR LARGE-SCALE SYSTEMS (SCALA), 2014, : 39 - 46
  • [44] GMRES convergence analysis for a convection-diffusion model problem
    Liesen, J
    Strakos, Z
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06): : 1989 - 2009
  • [45] Improving the Speed of Convergence of GMRES for Certain Perturbed Tridiagonal Systems
    Huy Nguyen
    Beauregard, Matthew A.
    Morgan, Ron
    45TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2013, : 63 - 67
  • [46] New convergence results on the global GMRES method for diagonalizable matrices
    Bellalij, M.
    Jbilou, K.
    Sadok, H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (02) : 350 - 358
  • [47] Convergence rate of GMRES on tridiagonal block Toeplitz linear systems
    Doostaki, R.
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (12): : 2533 - 2544
  • [48] Superlinear Convergence of the GMRES for PDE-Constrained Optimization Problems
    Axelsson, O.
    Karatson, J.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (09) : 921 - 936
  • [49] THE CYCLE-CONVERGENCE OF RESTARTED GMRES FOR NORMAL MATRICES IS SUBLINEAR
    Vecharynski, E.
    Langou, J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 186 - 196
  • [50] ROOTS OF MATRICES IN THE STUDY OF GMRES CONVERGENCE AND CROUZEIX'S CONJECTURE
    Choi, Daeshik
    Greenbaum, Anne
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (01) : 289 - 301