Performance comparison of wavelets-based machine learning technique for forecasting agricultural commodity prices

被引:15
|
作者
Paul, Ranjit Kumar [1 ]
Garai, Sandip [1 ]
机构
[1] ICAR Indian Agr Stat Res Inst, New Delhi, India
关键词
ARIMA; ANN; Nonlinearity; Wavelet transform; NEURAL-NETWORK; MODEL; ARIMA; DECOMPOSITION;
D O I
10.1007/s00500-021-06087-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate forecasting of various phenomenon has got crucial importance in the scenario of Indian agriculture as this helps farmers, policy-makers and government to acquire informed decisions. Agricultural time series datasets are mostly nonlinear, nonstationary, non-normal and heteroscedastic in nature. Though the stochastic model like autoregressive integrated moving average and its component models have gained much popularity in modeling linear dynamics, they fail to capture the nonlinearity present in the series. Machine learning (ML) techniques like artificial neural network (ANN) has rapidly emerged within the area of forecasting to take care of nonlinearity in the dataset. But, the presence of high chaotic nature and sophisticated nonlinear structure of the series sometimes distorts the particular model specification. Therefore, preprocessing of the series is required to extract the actual signal in it. Wavelet transformation may be an efficient tool in this scenario. The decomposed and denoised components through wavelet transformation can be modeled using ANN to make wavelet-based hybrid models and eventually, inverse wavelet transform is carried out to obtain the prediction of original series. The incontrovertible fact is that these hybrid models handle nonstationary, nonlinear and non-normal features of datasets simultaneously. The present study discusses the above approach envisaging monthly wholesale tomato price of three major markets in India, namely Ahmedabad, Burdwan and Madanapalli. The improvement over conventional techniques is obtained to a great extent by using wavelet-based combination approach with ML technique as exhibited through empirical evidence.
引用
收藏
页码:12857 / 12873
页数:17
相关论文
共 50 条
  • [41] El Nino, La Nina, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach
    Bonato, Matteo
    Cepni, Oguzhan
    Gupta, Rangan
    Pierdzioch, Christian
    JOURNAL OF FORECASTING, 2023, 42 (04) : 785 - 801
  • [42] Agricultural commodity price prediction model: a machine learning framework
    Mohanty, Manas Kumar
    Thakurta, Parag Kumar Guha
    Kar, Samarjit
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 15109 - 15128
  • [43] Agricultural commodity price prediction model: a machine learning framework
    Manas Kumar Mohanty
    Parag Kumar Guha Thakurta
    Samarjit Kar
    Neural Computing and Applications, 2023, 35 : 15109 - 15128
  • [44] Wavelets-based non-linear model for real-time daily flow forecasting in Krishna River
    Maheswaran, R.
    Khosa, Rakesh
    JOURNAL OF HYDROINFORMATICS, 2013, 15 (03) : 1022 - 1041
  • [45] Comparison of Machine Learning Based Methods for Residential Load Forecasting
    Shabbir, Noman
    Ahmadiahangar, Roya
    Kutt, Lauri
    Rosin, Argo
    2019 ELECTRIC POWER QUALITY AND SUPPLY RELIABILITY CONFERENCE (PQ) & 2019 SYMPOSIUM ON ELECTRICAL ENGINEERING AND MECHATRONICS (SEEM), 2019,
  • [46] Performance Comparison of Advanced Machine Learning Techniques for Electricity Price Forecasting
    Jana, Aryyama Kumar
    Paul, Rudrendu Kumar
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [47] A Performance Comparison of Machine Learning Algorithms for Load Forecasting in Smart Grid
    Alquthami, Thamer
    Zulfiqar, Muhammad
    Kamran, Muhammad
    Milyani, Ahmad H.
    Rasheed, Muhammad Babar
    IEEE ACCESS, 2022, 10 : 48419 - 48433
  • [48] Forecasting Malaysian Exchange Rate using Machine Learning Techniques based on Commodities Prices
    Ramakrishnan, Suresh
    Butt, Shamaila
    Chohan, Muhammad Ali
    Ahmad, Humara
    2017 5TH INTERNATIONAL CONFERENCE ON RESEARCH AND INNOVATION IN INFORMATION SYSTEMS (ICRIIS 2017): SOCIAL TRANSFORMATION THROUGH DATA SCIENCE, 2017,
  • [49] An IoT based Machine Learning Technique for Efficient Online Load Forecasting
    Madhuravani, B.
    Atluri, Srujan
    Valpadasu, Hema
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 547 - 554
  • [50] Machine Learning-Based Forecasting Technique for Crop Yield: A Study
    Ragunath, R.
    Narmadha, N.
    Rathipriya, R.
    SOFT COMPUTING FOR SECURITY APPLICATIONS, ICSCS 2022, 2023, 1428 : 277 - 289