Strong converse and Stein's lemma in quantum hypothesis testing

被引:1
|
作者
Ogawa, T
Nagaoka, H
机构
[1] Univ Tokyo, Fac Engn, Dept Math Engn & Informat Phys, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Electrocommun, Grad Sch Informat Syst, Chofu, Tokyo 1828585, Japan
关键词
quantum hypothesis testing; quantum information theory; quantum relative entropy; Stein's lemma; strong converse;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The hypothesis testing problem for two quantum states is treated. We show a new inequality between the errors of the first kind and the second kind, which complements the result of Hiai and Petz to establish the quantum version of Stein's lemma. The inequality is also used to show a bound on the probability of errors of the first kind when the power exponent for the probability of errors of the second kind exceeds the quantum relative entropy, which yields the strong converse in quantum hypothesis testing. Finally, we discuss the relation between the bound and the power exponent derived by Han and Kobayashi in classical hypothesis testing.
引用
收藏
页码:2428 / 2433
页数:6
相关论文
共 50 条
  • [31] Strong Converse for the Capacity of Quantum Gaussian Channels
    Bardhan, Bhaskar Roy
    Garcia-Patron, Raul
    Wilde, Mark M.
    Winter, Andreas
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 726 - 730
  • [33] Asymptotic reversibility of thermal operations for interacting quantum spin systems via generalized quantum Stein's lemma
    Sagawa, Takahiro
    Faist, Philippe
    Kato, Kohtaro
    Matsumoto, Keiji
    Nagaoka, Hiroshi
    Brandao, Fernando G. S. L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (49)
  • [34] Converse Ohlin's lemma for convex and strongly convex functions
    Adamek, Miroslaw
    Nikodem, Kazimierz
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 123 - 126
  • [35] On the generalization of Stein's Lemma for elliptical class of distributions
    Landsman, Z
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (10) : 1012 - 1016
  • [36] The converse of Schur's Lemma in Noetherian rings and group algebras
    Alaoui, M
    Haily, A
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) : 2109 - 2114
  • [37] Perfect rings for which the converse of Schur's lemma holds
    Haily, A
    Alaoui, M
    PUBLICACIONS MATEMATIQUES, 2001, 45 (01) : 219 - 222
  • [38] Weyl's Lemma and Converse Mean Value for Dunkl Operators
    Maslouhi, M.
    Daher, R.
    PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 91 - +
  • [39] A note on Stein's lemma for multivariate elliptical distributions
    Landsman, Zinoviy
    Vanduffel, Steven
    Yao, Jing
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (11) : 2016 - 2022
  • [40] On an inequality of Sagher and Zhou concerning Stein’s lemma
    Marco Annoni
    Loukas Grafakos
    Petr Honzík
    Collectanea mathematica, 2009, 60 : 297 - 306