Strong converse and Stein's lemma in quantum hypothesis testing

被引:1
|
作者
Ogawa, T
Nagaoka, H
机构
[1] Univ Tokyo, Fac Engn, Dept Math Engn & Informat Phys, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Electrocommun, Grad Sch Informat Syst, Chofu, Tokyo 1828585, Japan
关键词
quantum hypothesis testing; quantum information theory; quantum relative entropy; Stein's lemma; strong converse;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The hypothesis testing problem for two quantum states is treated. We show a new inequality between the errors of the first kind and the second kind, which complements the result of Hiai and Petz to establish the quantum version of Stein's lemma. The inequality is also used to show a bound on the probability of errors of the first kind when the power exponent for the probability of errors of the second kind exceeds the quantum relative entropy, which yields the strong converse in quantum hypothesis testing. Finally, we discuss the relation between the bound and the power exponent derived by Han and Kobayashi in classical hypothesis testing.
引用
收藏
页码:2428 / 2433
页数:6
相关论文
共 50 条
  • [1] Adversarial Hypothesis Testing and a Quantum Stein's Lemma for Restricted Measurements
    Brandao, Fernando G. S. L.
    Harrow, Aram W.
    Lee, James R.
    Peres, Yuval
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) : 5037 - 5054
  • [2] Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing
    Hayashi, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (50): : 10759 - 10773
  • [3] THE STRONG CONVERSE THEOREM FOR HYPOTHESIS-TESTING
    HAN, TS
    KOBAYASHI, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 178 - 180
  • [4] A Generalization of Quantum Stein's Lemma
    Brandao, Fernando G. S. L.
    Plenio, Martin B.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) : 791 - 828
  • [5] A Generalization of Quantum Stein’s Lemma
    Fernando G. S. L. Brandão
    Martin B. Plenio
    Communications in Mathematical Physics, 2010, 295 : 791 - 828
  • [6] Strong converse, feedback channel capacity and hypothesis testing
    Chen, PN
    Alajaji, F
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1995, 18 (06) : 777 - 785
  • [7] Two Approaches to Obtain the Strong Converse Exponent of Quantum Hypothesis Testing for General Sequences of Quantum States
    Mosonyi, Milan
    Ogawa, Tomohiro
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (12) : 6975 - 6994
  • [8] Stein's Lemma for Classical-Quantum Channels
    Berta, Mario
    Hirche, Christoph
    Kaur, Eneet
    Wilde, Mark M.
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2564 - 2568
  • [9] Strong Converse for a Degraded Wiretap Channel via Active Hypothesis Testing
    Hayashi, Masahito
    Tyagi, Himanshu
    Watanabe, Shun
    2014 52ND ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2014, : 148 - 151
  • [10] Ke Li’s Lemma for Quantum Hypothesis Testing in General Von Neumann Algebras
    Yan Pautrat
    Simeng Wang
    Annales Henri Poincaré, 2023, 24 : 2323 - 2339