A novel semi-supervised framework for UAV based crop/weed classification

被引:33
|
作者
Khan, Shahbaz [1 ,2 ]
Tufail, Muhammad [1 ,2 ]
Khan, Muhammad Tahir [1 ,2 ]
Khan, Zubair Ahmad [1 ]
Iqbal, Javaid [3 ]
Alam, Mansoor [1 ,2 ]
机构
[1] Univ Engn & Technol, Dept Mechatron Engn, Peshawar, Pakistan
[2] Natl Ctr Robot & Automat NCRA, Adv Robot & Automat Lab, Rawalpindi, Pakistan
[3] Natl Univ Sci & Technol NUST, Coll Elect & Mech Engn CEME, Islamabad, Pakistan
来源
PLOS ONE | 2021年 / 16卷 / 05期
关键词
WEED; IDENTIFICATION; NETWORK;
D O I
10.1371/journal.pone.0251008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Excessive use of agrochemicals for weed controlling infestation has serious agronomic and environmental repercussions associated. An appropriate amount of pesticide/ chemicals is essential for achieving the desired smart farming and precision agriculture (PA). In this regard, targeted weed control will be a critical component significantly helping in achieving the goal. A prerequisite for such control is a robust classification system that could accurately identify weed crops in a field. In this regard, Unmanned Aerial Vehicles (UAVs) can acquire high-resolution images providing detailed information for the distribution of weeds and offers a cost-efficient solution. Most of the established classification systems deploying UAV imagery are supervised, relying on image labels. However, this is a time-consuming and tedious task. In this study, the development of an optimized semi-supervised learning approach is proposed, offering a semi-supervised generative adversarial network for crops and weeds classification at early growth stage. The proposed algorithm consists of a generator that provides extra training data for the discriminator, which distinguishes weeds and crops using a small number of image labels. The proposed system was evaluated extensively on the Red Green Blue (RGB) images obtained by a quadcopter in two different croplands (pea and strawberry). The method achieved an average accuracy of 90% when 80% of training data was unlabeled. The proposed system was compared with several standards supervised learning classifiers and the results demonstrated that this technique could be applied for challenging tasks of crops and weeds classification, mainly when the labeled samples are small at less training time.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
    Nong, Chunshi
    Fan, Xijian
    Wang, Junling
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [2] Semi-supervised Learning Framework for UAV Detection
    Medaiyese, Olusiji O.
    Ezuma, Martins
    Lauf, Adrian P.
    Guvenc, Ismail
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [3] A novel semi-supervised learning framework for hyperspectral image classification
    Ye, Zhijing
    Li, Hong
    Song, Yalong
    Wang, Jianzhong
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (02)
  • [4] Semi-Supervised Online Visual Crop and Weed Classification in Precision Farming Exploiting Plant Arrangement
    Lottes, Philipp
    Stachniss, Cyrill
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 5155 - 5161
  • [5] LSTM AutoEncoders Applied to Semi-Supervised Crop Classification
    Teloglu, Hatice Kubra
    Aptoula, Erchan
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [6] Ant Based Semi-supervised Classification
    Halder, Anindya
    Ghosh, Susmita
    Ghosh, Ashish
    SWARM INTELLIGENCE, 2010, 6234 : 376 - +
  • [7] A Unified Framework of Density-Based Clustering for Semi-Supervised Classification
    Gertrudes, Jadson Castro
    Zimek, Arthur
    Sander, Jorg
    Campello, Ricardo J. G. B.
    30TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2018), 2018,
  • [8] A Novel Semi-Supervised Dimensionality Reduction Framework
    Guo, Xin
    Tie, Yun
    Qi, Lin
    Guan, Ling
    IEEE MULTIMEDIA, 2016, 23 (02) : 28 - 41
  • [9] A NOVEL SEMI-SUPERVISED LEARNING FOR SMS CLASSIFICATION
    Ahmed, Ishtiaq
    Guan, Donghai
    Chung, Teachoong
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2014, : 856 - 861
  • [10] A semi-supervised machine learning framework for microRNA classification
    Hassani, Mohsen Sheikh
    Green, James R.
    HUMAN GENOMICS, 2019, 13 (Suppl 1) : 43