Engineering Curvature in Graphene Ribbons Using Ultrathin Polymer Films

被引:10
|
作者
Li, Chunyu [1 ,2 ]
Koslowski, Marisol [3 ]
Strachan, Alejandro [1 ,2 ]
机构
[1] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47906 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47906 USA
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA
基金
美国国家科学基金会;
关键词
Graphene; nanoribbon; band structure; engineering; curvature; molecular dynamics; THERMOMECHANICAL RESPONSE; SUSPENDED GRAPHENE; RAMAN-SPECTROSCOPY; BAND-GAP; TRANSPORT; SHRINKAGE; BILAYER; STRAIN; FIELD;
D O I
10.1021/nl503527w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We propose a method to induce curvature in graphene nanoribbons in a controlled manner using an ultrathin thermoset polymer in a bimaterial strip setup and test it via molecular dynamics (MD) simulations. Continuum mechanics shows that curvature develops to release the residual stress caused by the chemical and thermal shrinkage of the polymer during processing and that this curvature increases with decreasing film thickness; however, significant deformation is only achieved for ultrathin polymer films. Quite surprisingly, explicit MD simulations of the curing and annealing processes show that the predicted trend not just continues down to film thicknesses of 1-2 nm but that the curvature development is enhanced significantly in such ultrathin films due to surface tension effects. This combination of effects leads to very large curvatures of over 0.14 nm(-1) that can be tuned via film thickness. This provides a new avenue to engineer curvature and, thus, electromagnetic properties of graphene.
引用
收藏
页码:7085 / 7089
页数:5
相关论文
共 50 条
  • [31] Dielectric spectroscopy of ultrathin ferroelectric polymer films
    Verkhovskaya, K. A.
    Plakseev, A. A.
    Lotonov, A. M.
    Gavrilova, N. D.
    Yudin, S. G.
    PHYSICS OF THE SOLID STATE, 2009, 51 (07) : 1370 - 1373
  • [32] Polymer crystallization of ultrathin films on solid substrates
    Liu, Yi-Xin
    Chen, Er-Qiang
    COORDINATION CHEMISTRY REVIEWS, 2010, 254 (9-10) : 1011 - 1037
  • [33] Elastic moduli of ultrathin amorphous polymer films
    Stafford, Christopher M.
    Vogt, Bryan D.
    Harrison, Christopher
    Julthongpiput, Duangrut
    Huang, Rui
    MACROMOLECULES, 2006, 39 (15) : 5095 - 5099
  • [34] Uniaxial Extension of Ultrathin Freestanding Polymer Films
    Bay, R. Konane
    Crosby, Alfred J.
    ACS MACRO LETTERS, 2019, 8 (09) : 1080 - 1085
  • [35] POLYMER-CHAIN STRUCTURE IN ULTRATHIN FILMS
    KUAN, SWJ
    MARTIN, PS
    FRANK, CW
    PEASE, RFW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1989, 197 : 58 - PMSE
  • [36] SHEAR DYNAMICS OF ULTRATHIN POLYMER-FILMS
    VANALSTEN, J
    GRANICK, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1989, 197 : 194 - POLY
  • [37] Dielectric Dispersion in Ultrathin Ferroelectric Polymer Films
    Verkhovskaya, K. A.
    Plakseev, A. A.
    Lotonov, A. M.
    Gavrilova, N. D.
    FERROELECTRICS, 2009, 379 : 368 - 374
  • [38] ULTRATHIN POLYMER FILMS FOR USE AS CAPACITOR DIELECTRICS
    PLATAU, G
    KRONICK, PL
    BROWNING, ME
    PROCEEDINGS ELECTRONIC COMPONENTS CONFERENCE, 1968, (MAY): : 30 - &
  • [39] Distribution of Segmental Mobility in Ultrathin Polymer Films
    Rotella, Cinzia
    Napolitano, Simone
    De Cremer, Lieven
    Koeckelberghs, Guy
    Wubbenhorst, Michael
    MACROMOLECULES, 2010, 43 (20) : 8686 - 8691
  • [40] Characterization of thin and ultrathin polymer and resist films
    Goldfarb, DL
    Lin, QH
    Angelopoulos, M
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XVIII, PTS 1 AND 2, 2001, 4345 : 335 - 343