Scaling Relations and Kinetic Monte Carlo Simulations To Bridge the Materials Gap in Heterogeneous Catalysis

被引:77
|
作者
Jorgensen, Mikkel [1 ,2 ]
Gronbeck, Henrik [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Competence Ctr Catalysis, S-41296 Gothenburg, Sweden
来源
ACS CATALYSIS | 2017年 / 7卷 / 08期
基金
瑞典研究理事会;
关键词
microkinetic modeling; kinetic Monte Carlo; density functional theory; CO oxidation; platinum nanoparticles; scaling relation; generalized coordination number; TOTAL-ENERGY CALCULATIONS; CO OXIDATION REACTION; WAVE BASIS-SET; MOLECULAR-BEAM; 1ST-PRINCIPLES CALCULATIONS; COORDINATION NUMBERS; CHEMICAL-REACTIONS; METHANE OXIDATION; MODEL CATALYSTS; CARBON-MONOXIDE;
D O I
10.1021/acscatal.7b01194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scaling relations combined with kinetic Monte Carlo simulations are used to study catalytic reactions on extended metal surfaces and nanoparticles. The reaction energies are obtained by density functional theory calculations, where the site-specific values are derived using generalized coordination numbers. This approach provides a way to handle the materials gap in heterogeneous catalysis. CO oxidation on platinum is investigated as an archetypical reaction. The kinetic simulations reveal clear differences between extended surfaces and nano particles in the size range of 1-5 nm. The presence of different types of sites on nanoparticles results in a turnover frequency that is orders of magnitude larger than on extended surfaces. For nanoparticles, the reaction conditions determine which sites dominate the overall activity. At low pressures and high temperatures, edge and corner sites determine the catalytic activity, whereas facet sites dominate the activity at high pressures and low temperatures. Furthermore, the reaction conditions are found to determine the particle-size dependence of the turnover frequency.
引用
收藏
页码:5054 / 5061
页数:8
相关论文
共 50 条
  • [21] Direct Kinetic Monte Carlo Simulations of Interdiffusion
    Sowa, P.
    Kozubski, R.
    Murch, G. E.
    Belova, I. V.
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2025, 46 (01) : 186 - 203
  • [22] Kinetic Monte Carlo simulations with minimal searching
    Schulze, TP
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036704
  • [23] Kinetic Monte Carlo simulations of organic ferroelectrics
    Cornelissen, Tim D.
    Biler, Michal
    Urbanaviciute, Indre
    Norman, Patrick
    Linares, Mathieu
    Kemerink, Martijn
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (03) : 1375 - 1383
  • [24] Monte Carlo Methods for Reactor Kinetic Simulations
    Srivastava, Argala
    Singh, K. P.
    Degweker, S. B.
    NUCLEAR SCIENCE AND ENGINEERING, 2018, 189 (02) : 152 - 170
  • [25] Monte Carlo simulations for a kinetic growth model
    Onody, RN
    Neves, UPC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (20): : L527 - L531
  • [26] Kinetic Monte Carlo simulations of FeCu alloys
    Domain, C
    Becquart, CS
    van Duysen, JC
    MICROSTRUCTURAL PROCESSES IN IRRADIATED MATERIALS, 1999, 540 : 643 - 648
  • [27] Kinetic Monte Carlo simulations of FeCu alloys
    Domain, C
    Becquart, CS
    Van Duysen, JC
    MULTISCALE MODELLING OF MATERIALS, 1999, 538 : 217 - 222
  • [28] Kinetic Monte Carlo simulations of proton conductivity
    Maslowski, T.
    Drzewinski, A.
    Ulner, J.
    Wojtkiewicz, J.
    Zdanowska-Fraczek, M.
    Nordlund, K.
    Kuronen, A.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [29] The Kinetic Monte Carlo Simulations of Proton Conductivity
    Tomasz, Maslowski
    6TH WARSAW SCHOOL OF STATISTICAL PHYSICS, 2017, : 111 - 111
  • [30] Kinetic Monte Carlo simulations of heteroepitaxial growth
    Biehl, M
    Ahr, M
    Kinzel, W
    Much, F
    THIN SOLID FILMS, 2003, 428 (1-2) : 52 - 55