In this paper we show that all Garside groups are strongly translation discrete, that is, the translation numbers of non-torsion elements are strictly positive and for any real number r there are only finitely many conjugacy classes of elements whose translation numbers are less than or equal to r. It is a consequence of the inequality "inf(s)(g) <= inf(s)(g(n))/n < inf(s) (g) + 1" for a positive integer it and an element g of a Garside group G where inf(s) denotes the maximal infimum for the conjugacy class. We prove the inequality by studying the semidirect product G(n) = Z proportional to G(n) of the infinite cyclic group Z and the cartesian product G(n) of a Garside group G, which turns out to be a Garside group. We also show that the root problem in a Garside group G can be reduced to a conjugacy problem in G(n), hence the root problem is solvable for Garside groups. (c) 2006 Elsevier Inc. All rights reserved.
机构:
Univ Western Sydney, Sch Quantitat Methods & Math Sci, Sydney, NSW, AustraliaUniv Western Sydney, Sch Quantitat Methods & Math Sci, Sydney, NSW, Australia
机构:
Univ Complutense Madrid, Fac Matemat, Madrid 28040, Spain
Inst Ciencias Matemat, CSIC UAM UC3M UCM, Nicolas Cabrera 13-15, Madrid 28049, SpainUniv Complutense Madrid, Fac Matemat, Madrid 28040, Spain
Antolin, Yago
Paris, Luis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne Franche Comte, CNRS, UMR 5584, IMB, F-21000 Dijon, FranceUniv Complutense Madrid, Fac Matemat, Madrid 28040, Spain
机构:
Univ Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, F-21078 Dijon, FranceUniv Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, F-21078 Dijon, France
Crisp, J
Paris, L
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, F-21078 Dijon, FranceUniv Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, F-21078 Dijon, France