Determination of the thermal parameters of the anizotropic materials using solution of a inverse interior heat conduction problem

被引:0
|
作者
Kucypera, S [1 ]
机构
[1] Politech Slaska, Inst Tech Cieplnej, PL-44100 Gliwice, Poland
来源
INZYNIERIA CHEMICZNA I PROCESOWA | 2004年 / 25卷 / 04期
关键词
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The algorithm of determining the directional coefficients thermal conductivity and specific heat for a homogeneous orthotropic solid materials by means of sensitivity analysis and dynamic sequential estimation method has been presented. Two-dimensional mathematical model of the transient heat conduction within the investigated sample was formulated using control volume method. The sensitivity analysis was carried out to the optimal selection of the places of temperature sensors (thermocouples) in consideration of accuracy of the determined quantities. The inverse heat conduction problem has been solved by means of the dynamic sequential estimation method. The exemplary results of the study are presented.
引用
收藏
页码:2191 / 2198
页数:8
相关论文
共 50 条
  • [31] Solution of an inverse Stokes problem using interior data
    Zeb, A
    Elliott, L
    Ingham, DB
    Lesnic, D
    BOUNDARY ELEMENTS XXII, 2000, 8 : 221 - 230
  • [32] Numerical solution of inverse heat conduction problem with nonstationary measurements
    Shidfar, A
    Karamali, GR
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (01) : 540 - 548
  • [33] Numerical solution of the imprecisely defined inverse heat conduction problem
    Smita Tapaswini
    S.Chakraverty
    Diptiranjan Behera
    Chinese Physics B, 2015, (05) : 157 - 166
  • [34] An application of DHW algorithm for the solution of inverse heat conduction problem
    Gembarovic, J.
    Loeffler, M.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2006, 27 (04) : 1264 - 1273
  • [35] Removal of numerical instability in the solution of an inverse heat conduction problem
    Pourgholi, R.
    Azizi, N.
    Gasimov, Y. S.
    Aliev, F.
    Khalafi, H. K.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) : 2664 - 2669
  • [36] DERIVING THE THERMAL CONTACT RESISTANCE FROM THE SOLUTION OF THE INVERSE HEAT-CONDUCTION PROBLEM.
    Artyukhin, E.A.
    Nenarkomov, A.V.
    Journal of Engineering Physics (English Translation of Inzhenerno-Fizicheskii Zhurnal), 1984, 46 (04): : 495 - 499
  • [37] Determination of boundary conditions from the solution of the inverse heat conduction problem in the gas nitriding process
    Joachimiak, Damian
    Joachimiak, Magda
    Frackowiak, Andrzej
    ENERGY, 2024, 300
  • [38] The solution of an inverse heat conduction problem subject to the specification of energies
    Lesnic, D
    Elliott, L
    Ingham, DB
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (01) : 25 - 32
  • [39] Neural networks in solution of inverse coefficient heat conduction problem
    Pavlov, D.Yu.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1994, (04): : 44 - 51
  • [40] Numerical solution of the imprecisely defined inverse heat conduction problem
    Tapaswini, Smita
    Chakraverty, S.
    Behera, Diptiranjan
    CHINESE PHYSICS B, 2015, 24 (05)