Hydrothermal Synthesis and Characteristics of LiMn2O4 as Cathode Materials

被引:3
|
作者
Park, Ji-In [1 ]
Hwang, Wan Sik [2 ]
Park, Su Bin [3 ]
Yoon, Sung Been [3 ]
Kim, Gang Hyeon [3 ]
Jo, Yong Joo [3 ]
Kim, Hee Seok [1 ,4 ]
Kim, Junki [1 ,5 ]
Choi, Jeong Gon [3 ]
Kim, Jong-Pil [1 ,3 ]
机构
[1] Korea Basic Sci Inst, Busan Ctr, Busan 46241, South Korea
[2] Korea Aerosp Univ, Dept Mat Engn, Goyang 10540, South Korea
[3] Busan II Sci High Sch, Busan 49317, South Korea
[4] Kyung Sung Univ, Dept Energy Sci, Busan 48434, South Korea
[5] Dong A Univ, Dept Chem Engn, Busan 49315, South Korea
关键词
Caddice-Clew-Like MnO2; Spinel LiMn2O4; Hydrothermal Method; Chemical Bonding State; Electrochemical Performance; LITHIUM; PERFORMANCE;
D O I
10.1166/nnl.2018.2650
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spinel LiMn2O4 cathode materials were grown using a two-step hydrothermal method. First, we synthesized caddice-clew-like MnO2, and spinel LiMn2O4 was grown on the caddice-clew-like MnO2 via the hydrothermal method. The structure, optical properties, chemical bonding states and electrochemical performance of the as-prepared MnO2, as-prepared LiMn2O4 and annealed LiMn2O4 were characterized via scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and electrochemical properties. The spinel LiMn2O4 produced on the caddice-clew-likeMnO(2) micro-particles exhibited mixed cubic spinel LiMn2O3 and a tetragonal-MnO2 structure without any residual impurities. The as-prepared LiMn2O4 and annealed LiMn2O4 cathode electrode exhibited specific discharge capacities 66.4 and 101.5 mAhg(-1) at a current density of 0.1 Ag-1, respectively. After 100 cycles at 0.1 Ag-1, the annealed LiMn2O4 cathode electrode retained 87% of the first discharge capacity.
引用
收藏
页码:868 / 872
页数:5
相关论文
共 50 条
  • [41] Hydrothermal synthesis of LiMn0.4Co0.6O2 cathode materials
    Zheng, Yi
    Huang, Xiang
    Dai, Jinhui
    Zhu, Zhibin
    CERAMICS INTERNATIONAL, 2011, 37 (08) : 3771 - 3773
  • [42] Controllable Hydrothermal Synthesis of Spinel LiMn2O4 and its Electrochemical Properties
    Luo, X. D.
    Zeng, W.
    Yuan, M.
    Huang, B.
    Li, Y. W.
    Yang, J. W.
    Xiao, S. H.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (08): : 7748 - 7764
  • [43] Spray-drying process for synthesis of nanosized LiMn2O4 cathode
    Wu, H. M.
    Tu, J. P.
    Yang, Y. Z.
    Shi, D. Q.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (13) : 4247 - 4250
  • [44] Synthesis of Mn3O4 nanowires and their transformation to LiMn2O4 polyhedrons, application of LiMn2O4 as a cathode in a lithium-ion battery
    Zhang, Xing
    Xing, Zheng
    Yu, Yang
    Li, Qianwen
    Tang, Kaibin
    Huang, Tao
    Zhu, Yongchun
    Qian, Yitai
    Chen, Dong
    CRYSTENGCOMM, 2012, 14 (04): : 1485 - 1489
  • [45] Synthesis of LiMn2O4 as cathode material for Li-ion batteries
    Liu, Guang-Ming
    Li, Mei-Shuan
    Gao, Hong
    Zeng, Chao-Liu
    Qian, Yu-Hai
    Dianyuan Jishu/Chinese Journal of Power Sources, 2002, 26 (01):
  • [46] Optimization of synthesis condition and electrode fabrication for spinel LiMn2O4 cathode
    Zhang, SS
    Jow, TR
    JOURNAL OF POWER SOURCES, 2002, 109 (01) : 172 - 177
  • [47] Spray-drying process for synthesis of nanosized LiMn2O4 cathode
    H. M. Wu
    J. P. Tu
    Y. Z. Yang
    D. Q. Shi
    Journal of Materials Science, 2006, 41 : 4247 - 4250
  • [48] Synthesis and characterization of spinel LiMn2O4 prepared by the cyclohexanone hydrothermal method
    Jiang, Qianqian
    Wang, Xingyao
    Miao, Cui
    Tang, Zhiyuan
    RSC ADVANCES, 2013, 3 (30): : 12088 - 12090
  • [49] LiMn2O4 nanocrystalline electrode materials
    Talik, E.
    Zalog, A.
    Skrzypek, D.
    Guzik, A.
    Zajdel, P.
    Michalska, M.
    Lipinska, L.
    CRYSTAL RESEARCH AND TECHNOLOGY, 2012, 47 (03) : 351 - 362
  • [50] H2O2-Aided One-Pot Hydrothermal Synthesis of Nanocrystalline LiMn2O4 Cathode for Lithium Batteries
    Sathiyaraj, K.
    Bhuvaneswari, Gangulibabu D.
    Kalaiselvi, N.
    Peter, A. John
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (02) : 314 - 320