Fourteen limit cycles in a cubic Hamiltonian system with higher-order perturbed terms

被引:0
|
作者
Hong, XC [1 ]
Liu, ZR [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using both qualitative analysis and numerical exploration we show that there are fourteen limit cycles in a cubic Hamiltonian system with higher-order perturbed terms.
引用
收藏
页码:1211 / 1215
页数:5
相关论文
共 50 条
  • [21] Higher Order Melnikov Functions for Studying Limit Cycles of Some Perturbed Elliptic Hamiltonian Vector Fields
    Rasoul Asheghi
    Arefeh Nabavi
    Qualitative Theory of Dynamical Systems, 2019, 18 : 289 - 313
  • [22] ON THE NUMBER OF LIMIT CYCLES OF A CUBIC NEAR-HAMILTONIAN SYSTEM
    Yang, Junmin
    Han, Maoan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (03) : 827 - 840
  • [23] Bottleneck matchings and Hamiltonian cycles in higher-order Gabriel graphs
    Biniaz, Ahmad
    Maheshwari, Anil
    Smid, Michiel
    INFORMATION PROCESSING LETTERS, 2020, 153
  • [24] ANALYSIS OF LIMIT CYCLES TO A PERTURBED INTEGRABLE NON-HAMILTONIAN SYSTEM
    Xiaochun Hong1
    2.School of Math.and Information Science
    Annals of Applied Mathematics, 2012, (03) : 263 - 268
  • [25] Bounding the number of limit cycles for perturbed piecewise linear Hamiltonian system
    Sui, Shiyou
    Xu, Weijiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)
  • [26] Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations
    Zhang, TH
    Han, MA
    Zang, H
    Meng, XZ
    CHAOS SOLITONS & FRACTALS, 2004, 22 (05) : 1127 - 1138
  • [27] Numerical Investigation of Limit Cycles to A Non-Hamiltonian Perturbed Integrable System
    Hong, Xiaochun
    Hong, Lijun
    Wang, Bin
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 583 - 587
  • [28] Limit Cycles of Perturbed Cubic Isochronous Center via the Second Order Averaging Method
    Li, Shimin
    Zhao, Yulin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [29] Controlling species densities in structurally perturbed intransitive cycles with higher-order interactions
    Chatterjee, Sourin
    Chowdhury, Sayantan Nag
    Ghosh, Dibakar
    Hens, Chittaranjan
    Hens, Chittaranjan
    CHAOS, 2022, 32 (10)
  • [30] BIFURCATIONS OF LIMIT CYCLES FOR A PERTURBED CUBIC SYSTEM WITH DOUBLE FIGURE EIGHT LOOP
    Zhang, Tonghua
    Zang, Hong
    Tade, Mose O.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):