An effective genetic algorithm approach to the quadratic minimum spanning tree problem

被引:62
|
作者
Zhou, GG [1 ]
Gen, M [1 ]
机构
[1] Ashikaga Inst Technol, Dept Ind & Syst Engn, Ashikaga 236, Japan
关键词
D O I
10.1016/S0305-0548(97)00039-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present a new approach to solve the q-MST problem by using a genetic algorithm. A skillful encoding for trees, denoted by Prufer number, is adopted for GA operation. On comparing with the existing heuristic algorithms by 17 randomly generated numerical examples from 6-vertex graph to 50-vertex graph, the new GA approach shows its high effectiveness in solving the q-MST problem and real value in the practical network optimization. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 50 条
  • [1] A genetic algorithm approach on capacitated minimum spanning tree problem
    Zhou, Gengui
    Cao, Zhenyu
    Cao, Jian
    Meng, Zhiqing
    [J]. 2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 215 - 218
  • [2] An effective genetic algorithm for the minimum-label spanning tree problem
    Nummela, Jeremiah
    Julstrom, Bryant A.
    [J]. GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 553 - +
  • [3] THE QUADRATIC MINIMUM SPANNING TREE PROBLEM
    ASSAD, A
    XU, WX
    [J]. NAVAL RESEARCH LOGISTICS, 1992, 39 (03) : 399 - 417
  • [4] A genetic algorithm for the Capacitated Minimum Spanning Tree problem
    de Lacerda, Estefane George Macedo
    de Medeiros, Manoel Firmino
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 725 - +
  • [5] A swarm intelligence approach to the quadratic minimum spanning tree problem
    Sundar, Shyam
    Singh, Alok
    [J]. INFORMATION SCIENCES, 2010, 180 (17) : 3182 - 3191
  • [6] Genetic algorithm approach on multi-criteria minimum spanning tree problem
    Zhou, GG
    Gen, M
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 114 (01) : 141 - 152
  • [7] Fuzzy quadratic minimum spanning tree problem
    Gao, JW
    Lu, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (03) : 773 - 788
  • [8] Solving the Quadratic Minimum Spanning Tree Problem
    Cordone, Roberto
    Passeri, Gianluca
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11597 - 11612
  • [9] Stochastic quadratic minimum spanning tree problem
    Lu, Mei
    Gao, Jinwu
    [J]. Proceedings of the First International Conference on Information and Management Sciences, 2002, 1 : 179 - 183
  • [10] Minimum Spanning Tree Problem Research based on Genetic Algorithm
    Liu, Hong
    Zhou, Gengui
    [J]. SECOND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 2, PROCEEDINGS, 2009, : 197 - +