Isometries of real Hilbert C*-modules

被引:3
|
作者
Hsu, Ming-Hsiu [1 ]
Wong, Ngai-Ching [2 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 32054, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
Hilbert bundles; Hilbert C*-modules; Isometries; JB*-triples; THEOREM; FORMS;
D O I
10.1016/j.jmaa.2016.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T : V -> W be a surjective real linear isometry between full real Hilbert C*-modules over real C*-algebras A and B, respectively. We show that the following conditions are equivalent: (a) T is a 2-isometry; (b) T is a complete isometry; (c) T preserves ternary products; (d) T preserves inner products; (e) T is a module map. When A and B are commutative, we give a full description of the structure of T. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:807 / 827
页数:21
相关论文
共 50 条
  • [31] On∗-fusion frames for Hilbert C∗-modules
    Assila, Nadia
    Kabbaj, Samir
    Zoubeir, Hicham
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [32] Pullback diagram of Hilbert C*-modules
    Amyari, Maryam
    Chakoshi, Mahnaz
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 569 - 575
  • [33] NUMERICAL RADIUS IN HILBERT C*-MODULES
    Zamani, Ali
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1017 - 1030
  • [34] On equivariant embedding of Hilbert C* modules
    Debashish Goswami
    Proceedings - Mathematical Sciences, 2009, 119 : 63 - 70
  • [35] MORITA EQUIVALENCE OF HILBERT C*- MODULES
    Amini, Massoud
    Asadi, Mohammad B.
    Joita, Maria
    Rezavand, Reza
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 102 - 110
  • [36] Pair frames in Hilbert C*-modules
    Azandaryani, M. Mirzaee
    Fereydooni, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [37] Hilbert C*-modules over Σ*-aIgebras
    Bearden, Clifford A.
    STUDIA MATHEMATICA, 2016, 235 (03) : 269 - 304
  • [38] On extendability of functionals on Hilbert C*-modules
    Manuilov, Vladimir
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 998 - 1005
  • [39] BESSEL MULTIPLIERS IN HILBERT C*-MODULES
    Khosravi, Amir
    Azandaryani, Morteza Mirzaee
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (03): : 153 - 163
  • [40] Hilbert C*- and W*-modules and their morphisms
    Manuilov V.M.
    Troitsky E.V.
    Journal of Mathematical Sciences, 2000, 98 (2) : 137 - 201