Characterization and reduction of reabsorption losses in luminescent solar concentrators

被引:111
|
作者
Wilson, Lindsay R. [1 ]
Rowan, Brenda C. [1 ]
Robertson, Neil [2 ]
Moudam, Omar [2 ]
Jones, Anita C. [2 ]
Richards, Bryce S. [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
OPTICAL-PROPERTIES; ORGANIC-DYES; PERFORMANCE; CONVERSION; PERYLENE; EFFICIENCY; COLLECTOR; EMISSION; POLYMERS; OUTPUT;
D O I
10.1364/AO.49.001651
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The effects of excitation wavelength on the optical properties (emission spectrum and quantum yield) of a luminescent solar concentrator (LSC) containing a fluorescent organic dye (Lumogen F Rot 305) are studied. Excitation at wavelengths on the long-wavelength edge of the absorption spectrum of the dye results in redshifted emission, but the quantum yield remains constant at 100%. The origin of this effect and its consequences are discussed. The extent of the long-wavelength tail of the absorption spectrum of the dye is determined and the importance in reabsorption losses is shown. The optical efficiencies and photon transport probabilities of LSCs containing either an organic dye or a rare-earth lanthanide complex are compared using ray-tracing simulations and experiment. The optical efficiency is shown to depend strongly on the Stokes shift of the fluorophore. The lanthanide complex, which has a very large Stokes shift, exhibits a higher optical efficiency than the dye (64% cf. 50%), despite its lower quantum yield (86% cf. 100%). (C) 2010 Optical Society of America
引用
收藏
页码:1651 / 1661
页数:11
相关论文
共 50 条
  • [21] LIGHT TRANSPORT IN PLANAR LUMINESCENT SOLAR CONCENTRATORS - THE ROLE OF MATRIX LOSSES
    THOMAS, WRL
    DRAKE, JM
    LESIECKI, ML
    APPLIED OPTICS, 1983, 22 (21): : 3440 - 3450
  • [22] Luminescent solar concentrators. I. Concentrators based on mixtures of dyes in PMMA. Spectral and luminescent properties, reabsorption and energy transfer
    V. A. Svetlichnyi
    I. N. Lapin
    E. A. Vaitulevich
    A. A. Biryukov
    Russian Physics Journal, 2013, 56 : 225 - 232
  • [23] Luminescent solar concentrators. I. Concentrators based on mixtures of dyes in PMMA. Spectral and luminescent properties, reabsorption and energy transfer
    Svetlichnyi, V. A.
    Lapin, I. N.
    Vaitulevich, E. A.
    Biryukov, A. A.
    RUSSIAN PHYSICS JOURNAL, 2013, 56 (02) : 225 - 232
  • [24] Luminescent solar concentrators - the solar waveguides
    Mohan, Brindha V. G.
    Vasu, V.
    Benjamin, A. Robson
    Kottaisamy, M.
    CURRENT SCIENCE, 2018, 114 (08): : 1656 - 1664
  • [25] LUMINESCENT SOLAR CONCENTRATORS - A REVIEW
    HERMANN, AM
    SOLAR ENERGY, 1982, 29 (04) : 323 - 329
  • [26] GLASSES FOR LUMINESCENT SOLAR CONCENTRATORS
    NEUROTH, N
    HASPEL, R
    SOLAR ENERGY MATERIALS, 1987, 16 (1-3): : 235 - 242
  • [27] Low reabsorption and stability enhanced luminescent solar concentrators based on silica encapsulated quantum rods
    Li, Shang
    Liu, Haochen
    Chen, Wei
    Zhou, Ziming
    Wu, Dan
    Lu, Rui
    Zhao, Bingxin
    Hao, Junjie
    Yang, Lei
    Yang, Hongcheng
    Cai, Rui
    Xu, Bing
    Wang, Kai
    Sun, Xiao Wei
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 206
  • [28] Circular luminescent solar concentrators
    Gajic, Maja
    Lisi, Fabio
    Kirkwood, Nicholas
    Smith, Trevor A.
    Mulvaney, Paul
    Rosengarten, Gary
    SOLAR ENERGY, 2017, 150 : 30 - 37
  • [29] Nanophotonic luminescent solar concentrators
    Rousseau, I.
    Wood, V.
    APPLIED PHYSICS LETTERS, 2013, 103 (13)
  • [30] Cascade luminescent solar concentrators
    Daorta, Sthy Flores
    Proto, Antonio
    Fusco, Roberto
    Andreani, Lucio Claudio
    Liscidini, Marco
    APPLIED PHYSICS LETTERS, 2014, 104 (15)