A review of Pareto pruning methods for multi-objective optimization

被引:75
|
作者
Petchrompo, Sanyapong [1 ,2 ]
Coit, David W. [3 ,4 ]
Brintrup, Alexandra [5 ]
Wannakrairot, Anupong [1 ,2 ]
Parlikad, Ajith Kumar [5 ]
机构
[1] Mahidol Univ, Dept Math, Fac Sci, Rama 6 Rd, Bangkok 10400, Thailand
[2] CHE, Ctr Excellence Math, 328 Si Ayutthaya Rd, Bangkok 10400, Thailand
[3] Rutgers State Univ, Dept Ind & Syst Engn, 96 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[4] Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China
[5] Univ Cambridge, Inst Mfg, Dept Engn, 17 Charles Babbage Rd, Cambridge CB3 0FS, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Multi-objective optimization; Multi-criteria decision analysis; Pareto pruning; Pareto set reduction; Post Pareto analysis; MULTICRITERIA DECISION-MAKING; REDUNDANCY ALLOCATION PROBLEM; DATA ENVELOPMENT ANALYSIS; EVOLUTIONARY ALGORITHM; SCHEDULING PROBLEMS; GENETIC ALGORITHMS; SYSTEM; SELECTION; KNEE; MANAGEMENT;
D O I
10.1016/j.cie.2022.108022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Previous researchers have made impressive strides in developing algorithms and solution methodologies to address multi-objective optimization (MOO) problems in industrial engineering and associated fields. One traditional approach is to determine a Pareto optimal set that represents the trade-off between objectives. However, this approach could result in an extremely large set of solutions, making it difficult for the decision maker to identify the most promising solutions from the Pareto front. To deal with this issue, later contributors proposed alternative approaches that can autonomously draw up a shortlist of Pareto optimal solutions so that the results are more comprehensible to the decision maker. These alternative approaches are referred to as the pruning method in this review. The selection of the representative solutions in the pruning method is based on a predefined instruction, and its resolution process is mostly independent of the decision maker. To systematize studies on this aspect, we first provide the definitions of the pruning method and related terms; then, we establish a new classification of MOO methods to distinguish the pruning method from the a priori, a posteriori, and interactive methods. To facilitate readers in identifying a method that suits their interests, we further classify the pruning method by the instruction on how the representative solutions are selected, namely into the preference-based, diversity-based, efficiency-based, and problem specific methods. Ultimately, the comparative analysis of the pruning method and other MOO approaches allows us to provide insights into the current trends in the field and offer recommendations on potential research directions.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Applied Pareto multi-objective optimization by stochastic solvers
    Martinez-Iranzo, Miguel
    Herrero, Juan M.
    Sanchis, Javier
    Blasco, Xavier
    Garcia-Nieto, Sergio
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (03) : 455 - 465
  • [12] Pareto Artificial Life Algorithm for Multi-Objective Optimization
    Song, Jin-Dae
    Yang, Bo-Suk
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2011, 4 (02) : 43 - 60
  • [13] Queued pareto local search for multi-objective optimization
    Inja, Maarten
    Kooijman, Chiel
    de Waard, Maarten
    Roijers, Diederik M.
    Whiteson, Shimon
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8672 : 589 - 599
  • [14] Determination of Pareto frontier in multi-objective maintenance optimization
    Certa, Antonella
    Galante, Giacomo
    Lupo, Toni
    Passannanti, Gianfranco
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (07) : 861 - 867
  • [15] Representation of the pareto front for heterogeneous multi-objective optimization
    Thomann J.
    Eichfelder G.
    Journal of Applied and Numerical Optimization, 2019, 1 (03): : 293 - 323
  • [16] Pareto optimization to accelerate multi-objective virtual screening
    Fromer, Jenna C.
    Graff, David E.
    Coley, Connor W.
    DIGITAL DISCOVERY, 2024, 3 (03): : 467 - 481
  • [17] Queued Pareto Local Search for Multi-Objective Optimization
    Inja, Maarten
    Kooijman, Chiel
    de Waard, Maarten
    Roijers, Diederik M.
    Whiteson, Shimon
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 589 - 599
  • [18] A survey on pareto front learning for multi-objective optimization
    Kang, Shida
    Li, Kaiwen
    Wang, Rui
    JOURNAL OF MEMBRANE COMPUTING, 2024,
  • [19] Pareto-curve continuation in multi-objective optimization
    Schmidt, Stephan
    Schulz, Volker
    PACIFIC JOURNAL OF OPTIMIZATION, 2008, 4 (02): : 243 - 258
  • [20] Multi-Objective Optimization with Modified Pareto Differential Evolution
    Chen Xiao-qing
    Hou Zhong-xi
    Liu Jian-Xia
    INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL 1, PROCEEDINGS, 2008, : 90 - 95