Kernel Interpolation for Scalable Online Gaussian Processes

被引:0
|
作者
Stanton, Samuel [1 ]
Maddox, Wesley J. [1 ]
Delbridge, Ian [2 ]
Wilson, Andrew Gordon [1 ]
机构
[1] NYU, New York, NY 10003 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian processes (GPs) provide a gold standard for performance in online settings, such as sample-efficient control and black box optimization, where we need to update a posterior distribution as we acquire data in a sequential fashion. However, updating a GP posterior to accommodate even a single new observation after having observed n points incurs at least O(n) computations in the exact setting. We show how to use structured kernel interpolation to efficiently reuse computations for constant-time O(1) online updates with respect to the number of points n, while retaining exact inference. We demonstrate the promise of our approach in a range of online regression and classification settings, Bayesian optimization, and active sampling to reduce error in malaria incidence forecasting. Code is available at https://github.com/wjmaddox/online_gp.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [11] Interpolation of intermolecular potentials using Gaussian processes
    Uteva, Elena
    Graham, Richard S.
    Wilkinson, Richard D.
    Wheatley, Richard J.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (16):
  • [12] Scalable Hyperparameter Optimization with Lazy Gaussian Processes
    Ram, Raju
    Mueller, Sabine
    Pfreundt, Franz-Josef
    Gauger, Nicolas R.
    Keuper, Janis
    PROCEEDINGS OF 2019 5TH IEEE/ACM WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2019), 2019, : 56 - 65
  • [13] Scalable Meta-Learning with Gaussian Processes
    Tighineanu, Petru
    Grossberger, Lukas
    Baireuther, Paul
    Skubch, Kathrin
    Falkner, Stefan
    Vinogradska, Julia
    Berkenkamp, Felix
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [14] Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes
    Samo, Yves-Laurent Kom
    Roberts, Stephen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2227 - 2236
  • [15] Differentiable Compositional Kernel Learning for Gaussian Processes
    Sun, Shengyang
    Zhang, Guodong
    Wang, Chaoqi
    Zeng, Wenyuan
    Li, Jiaman
    Grosse, Roger
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [16] Measuring the robustness of Gaussian processes to kernel choice
    Stephenson, William T.
    Ghosh, Soumya
    Nguyen, Tin D.
    Yurochkin, Mikhail
    Deshpande, Sameer K.
    Broderick, Tamara
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [17] Estimating Mixture of Gaussian Processes by Kernel Smoothing
    Huang, Mian
    Li, Runze
    Wang, Hansheng
    Yao, Weixin
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2014, 32 (02) : 259 - 270
  • [18] Multivariate online kernel density estimation with Gaussian kernels
    Kristan, Matej
    Leonardis, Ales
    Skocaj, Danijel
    PATTERN RECOGNITION, 2011, 44 (10-11) : 2630 - 2642
  • [19] Online Discriminative Kernel Density Estimator With Gaussian Kernels
    Kristan, Matej
    Leonardis, Ales
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (03) : 355 - 365
  • [20] Modeling and Interpolation of the Ambient Magnetic Field by Gaussian Processes
    Solin, Arno
    Kok, Manon
    Wahlstrom, Niklas
    Schon, Thomas B.
    Sarkka, Simo
    IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (04) : 1112 - 1127