A NONAMENABLE "FACTOR" OF A EUCLIDEAN SPACE

被引:3
|
作者
Timar, Adam [1 ]
机构
[1] Alfred Renyi Inst Math, Budapest, Hungary
来源
ANNALS OF PROBABILITY | 2021年 / 49卷 / 03期
关键词
Random tiling; isometry-invariant tiling; indistinguishability; factor of IID; PERCOLATION; INDISTINGUISHABILITY;
D O I
10.1214/20-AOP1485
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Answering a question of Benjamini, we present an isometry-invariant random partition of the Euclidean space R-d, d >= 3, into infinite connected indistinguishable pieces, such that the adjacency graph defined on the pieces is the 3-regular infinite tree. Along the way, it is proved that any finitely generated one-ended amenable Cayley graph can be represented in R-d as an isometry-invariant random partition of R-d to bounded polyhedra, and also as an isometry-invariant random partition of R-d to indistinguishable pieces. A new technique is developed to prove indistinguishability for certain constructions, connecting this notion to factor of IID's.
引用
收藏
页码:1427 / 1449
页数:23
相关论文
共 50 条
  • [41] EUCLIDEAN NATURE OF COLOR SPACE
    COHEN, J
    FRIDEN, TP
    [J]. BULLETIN OF THE PSYCHONOMIC SOCIETY, 1975, 5 (02) : 159 - 161
  • [42] Isothermic submanifolds of Euclidean space
    Tojeiro, Ruy
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 598 : 1 - 24
  • [43] On equidistant polytopes in the Euclidean space
    Vincze, Csaba
    Olah, Mark
    Lengyel, Leticia
    [J]. INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (04): : 577 - 595
  • [44] The metric fibrations of Euclidean space
    Gromoll, D
    Walschap, G
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 57 (02) : 233 - 238
  • [45] ON THE SPACE OF ASYMPTOTICALLY EUCLIDEAN METRICS
    ANDERSSON, L
    [J]. COMPOSITIO MATHEMATICA, 1989, 69 (01) : 61 - 81
  • [46] ON EMBEDDINGS OF COMPACTA IN EUCLIDEAN SPACE
    BRYANT, JL
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (01) : 46 - &
  • [47] Embedding graphs in Euclidean space
    Frankl, Nora
    Kupavskii, Andrey
    Swanepoel, Konrad J.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 171
  • [48] On Pairs of Hypersurfaces in Euclidean Space
    M. A. Cheshkova
    [J]. Mathematical Notes, 2004, 75 : 444 - 446
  • [49] The Rigidity of Hypersurfaces in Euclidean Space
    Chunhe Li
    Yanyan Xu
    [J]. Chinese Annals of Mathematics, Series B, 2019, 40 : 439 - 456
  • [50] Mapping preferences into Euclidean space
    Luaces, Oscar
    Diez, Jorge
    Joachims, Thorsten
    Bahamonde, Antonio
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (22) : 8588 - 8596