Validation of nearest neighbor classifiers

被引:8
|
作者
Bax, E [1 ]
机构
[1] Univ Richmond, Dept Math & Comp Sci, Richmond, VA 23173 USA
关键词
error bounds; machine learning; nearest neighbor classifier; statistics; validation;
D O I
10.1109/18.887892
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This correspondence presents a method to bound the out-of-sample error rate of a nearest neighbor classifier.(1) The bound is based only on the examples that comprise the classifier. Thus all available examples can be used in the classifier; no examples need to be withheld to compute error bounds. The estimate used in the bound is an extension of the holdout estimate. The difference in error rates between the holdout classifier and the classifier consisting of all available examples is estimated using truncated inclusion and exclusion.
引用
收藏
页码:2746 / 2752
页数:7
相关论文
共 50 条
  • [1] Validation of k-Nearest Neighbor Classifiers
    Bax, Eric
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 3225 - 3234
  • [2] Coevolution of nearest neighbor classifiers
    Gagne, Christian
    Parizeau, Marc
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2007, 21 (05) : 921 - 946
  • [3] FINDING PROTOTYPES FOR NEAREST NEIGHBOR CLASSIFIERS
    CHANG, CL
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (11) : 1179 - 1184
  • [4] Tensored nearest-neighbor classifiers
    Chalasani, V
    Beling, PA
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2913 - 2916
  • [5] Adapt Bagging to Nearest Neighbor Classifiers
    Zhi-Hua Zhou
    Yang Yu
    [J]. Journal of Computer Science and Technology, 2005, 20 : 48 - 54
  • [6] Selective sampling for nearest neighbor classifiers
    Lindenbaum, M
    Markovitch, S
    Rusakov, D
    [J]. MACHINE LEARNING, 2004, 54 (02) : 125 - 152
  • [7] Fast implementations of nearest neighbor classifiers
    Grother, PJ
    Candela, GT
    Blue, JL
    [J]. PATTERN RECOGNITION, 1997, 30 (03) : 459 - 465
  • [8] Selective Sampling for Nearest Neighbor Classifiers
    Michael Lindenbaum
    Shaul Markovitch
    Dmitry Rusakov
    [J]. Machine Learning, 2004, 54 : 125 - 152
  • [9] On visualization and aggregation of nearest neighbor classifiers
    Ghosh, AK
    Chaudhuri, P
    Murthy, CA
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) : 1592 - 1602
  • [10] Selective sampling for nearest neighbor classifiers
    Lindenbaum, M
    Markovich, S
    Rusakov, D
    [J]. SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), 1999, : 366 - 371