Coevolution of nearest neighbor classifiers

被引:13
|
作者
Gagne, Christian [1 ]
Parizeau, Marc [1 ]
机构
[1] Univ Laval, Dept Genie Elect & Genie Informat, Lab Vis Syst Numeriques, Ste Foy, PQ G1K 7P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
pattern recognition; nearest neighbor classification; prototype selection; proximity measure; evolutionary computation; genetic algorithms; genetic programming; coevolution; multiobjective optimization;
D O I
10.1142/S0218001407005752
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents experiments of Nearest Neighbor (NN) classifier design using different evolutionary computation methods. Through multiobjective and coevolution techniques, it combines genetic algorithms and genetic programming to both select NN prototypes and design a neighborhood proximity measure, in order to produce a more efficient and robust classifier. The proposed approach is compared with the standard NN classifier, with and without the use of classic prototype selection methods, and classic data normalization. Results on both synthetic and real data sets show that the proposed methodology performs as well or better than other methods on all tested data sets.
引用
收藏
页码:921 / 946
页数:26
相关论文
共 50 条
  • [1] Validation of nearest neighbor classifiers
    Bax, E
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) : 2746 - 2752
  • [2] FINDING PROTOTYPES FOR NEAREST NEIGHBOR CLASSIFIERS
    CHANG, CL
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (11) : 1179 - 1184
  • [3] Tensored nearest-neighbor classifiers
    Chalasani, V
    Beling, PA
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2913 - 2916
  • [4] Adapt Bagging to Nearest Neighbor Classifiers
    Zhi-Hua Zhou
    Yang Yu
    [J]. Journal of Computer Science and Technology, 2005, 20 : 48 - 54
  • [5] Selective sampling for nearest neighbor classifiers
    Lindenbaum, M
    Markovitch, S
    Rusakov, D
    [J]. MACHINE LEARNING, 2004, 54 (02) : 125 - 152
  • [6] Fast implementations of nearest neighbor classifiers
    Grother, PJ
    Candela, GT
    Blue, JL
    [J]. PATTERN RECOGNITION, 1997, 30 (03) : 459 - 465
  • [7] Selective Sampling for Nearest Neighbor Classifiers
    Michael Lindenbaum
    Shaul Markovitch
    Dmitry Rusakov
    [J]. Machine Learning, 2004, 54 : 125 - 152
  • [8] On visualization and aggregation of nearest neighbor classifiers
    Ghosh, AK
    Chaudhuri, P
    Murthy, CA
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) : 1592 - 1602
  • [9] Selective sampling for nearest neighbor classifiers
    Lindenbaum, M
    Markovich, S
    Rusakov, D
    [J]. SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), 1999, : 366 - 371
  • [10] Large margin nearest neighbor classifiers
    Domeniconi, C
    Gunopulos, D
    Peng, J
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04): : 899 - 909