Quasi-linear equations in RN:: perturbation results

被引:0
|
作者
Pellacci, B
机构
关键词
perturbation method; bifurcation theory;
D O I
10.1007/s00030-003-1001-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove existence of nontrivial solutions for the quasi-linear elliptic problem {div((I + epsilonA(x, u))delu) + u + epsilonH(x, u,delu) = \u\(p-1), in R-N, u is an element of H-1(R-N) boolean AND W-2,W-q (R-N), q > N where 1 < p < (N + 2)/(N - 2), N > 2 and the operator -div((I + epsilonA(x, u))delu) +epsilonH(x, u, delu) is a perturbation of the Laplacian. We use a perturbation method recently developed in [1], [2], [3] and we get results both in the variational and in the non-variational framework.
引用
收藏
页码:95 / 117
页数:23
相关论文
共 50 条