TOWARDS UNIVERSAL PHYSICAL ATTACKS ON CASCADED CAMERA-LIDAR 3D OBJECT DETECTION MODELS

被引:14
|
作者
Abdelfauah, Mazen [1 ]
Yuan, Kaiwen [1 ]
Wang, Z. Jane [1 ]
Ward, Rabab [1 ]
机构
[1] Univ British Columbia, ECE Dept, Vancouver, BC V6T 1Z4, Canada
关键词
Adversarial attacks; cascaded multimodal; 3D object detection; point cloud; deep learning;
D O I
10.1109/ICIP42928.2021.9506016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a universal and physically realizable adversarial attack on a cascaded multi-modal deep learning network (DNN), in the context of self-driving cars. DNNs have achieved high performance in 3D object detection, but they are known to be vulnerable to adversarial attacks. These attacks have been heavily investigated in the RGB image domain and more recently in the point cloud domain, but rarely in both domains simultaneously - a gap to be filled in this paper. We use a single 3D mesh and differentiable rendering to explore how perturbing the mesh's geometry and texture can reduce the robustness of DNNs to adversarial attacks. We attack a prominent cascaded multi-modal DNN, the Frustum-Pointnet model. Using the popular KITTI benchmark, we showed that the proposed universal multi-modal attack was successful in reducing the model's ability to detect a car by nearly 73%. This work can aid in the understanding of what the cascaded RGB-point cloud DNN learns and its vulnerability to adversarial attacks.
引用
收藏
页码:3592 / 3596
页数:5
相关论文
共 50 条
  • [41] Fusion of an RGB camera and LiDAR sensor through a Graph CNN for 3D object detection
    Choi, Jinsol
    Shin, Minwoo
    Paik, Joonki
    OPTICS CONTINUUM, 2023, 2 (05): : 1166 - 1179
  • [42] LiDAR-Camera Fusion in Perspective View for 3D Object Detection in Surface Mine
    Ai, Yunfeng
    Yang, Xue
    Song, Ruiqi
    Cui, Chenglin
    Li, Xinqing
    Cheng, Qi
    Tian, Bin
    Chen, Long
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (02): : 3721 - 3730
  • [43] High Dimensional Frustum PointNet for 3D Object Detection from Camera, LiDAR, and Radar
    Wang, Leichen
    Chen, Tianbai
    Anklam, Carsten
    Goldluecke, Bastian
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1615 - 1622
  • [44] FGFusion: Fine-Grained Lidar-Camera Fusion for 3D Object Detection
    Yin, Zixuan
    Sun, Han
    Liu, Ningzhong
    Zhou, Huiyu
    Shen, Jiaquan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 505 - 517
  • [45] Deep structural information fusion for 3D object detection on LiDAR-camera system
    An, Pei
    Liang, Junxiong
    Yu, Kun
    Fang, Bin
    Ma, Jie
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 214
  • [46] CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object Tracking With Camera-LiDAR Fusion
    Wang, Li
    Zhang, Xinyu
    Qin, Wenyuan
    Li, Xiaoyu
    Gao, Jinghan
    Yang, Lei
    Li, Zhiwei
    Li, Jun
    Zhu, Lei
    Wang, Hong
    Liu, Huaping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 11981 - 11996
  • [47] Range Adaptation for 3D Object Detection in LiDAR
    Wang, Ze
    Ding, Sihao
    Li, Ying
    Zhao, Minming
    Roychowdhury, Sohini
    Wallin, Andreas
    Sapiro, Guillermo
    Qiu, Qiang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2320 - 2328
  • [48] 3D Object Detection Based on LiDAR Data
    Sahba, Ramin
    Sahba, Amin
    Jamshidi, Mo
    Rad, Paul
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 511 - 514
  • [49] 3D Object Detection and Tracking Based on Lidar-Camera Fusion and IMM-UKF Algorithm Towards Highway Driving
    Nie, Chang
    Ju, Zhiyang
    Sun, Zhifeng
    Zhang, Hui
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (04): : 1242 - 1252
  • [50] A Multi-Phase Camera-LiDAR Fusion Network for 3D Semantic Segmentation With Weak Supervision
    Chang, Xuepeng
    Pan, Huihui
    Sun, Weichao
    Gao, Huijun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 3737 - 3746