Direct Reduction of NO to N2O by a Mononuclear Nonheme Thiolate Ligated Iron(II) Complex via Formation of a Metastable {FeNO}7 Complex

被引:4
|
作者
Dey, Aniruddha [1 ]
Albert, Therese [3 ]
Kong, Richard Y. [2 ]
MacMillan, Samantha N. [2 ]
Moenne-Loccoz, Pierre [3 ]
Lancaster, Kyle M. [2 ]
Goldberg, David P. [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
[2] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[3] Oregon Hlth & Sci Univ, Dept Chem Physiol & Biochem, Portland, OR 97239 USA
基金
美国国家卫生研究院;
关键词
NITRIC-OXIDE REDUCTASE; FLAVODIIRON PROTEINS; MOSSBAUER-SPECTRA; ELECTRONIC-STRUCTURE; SULFUR; REACTIVITY; MECHANISM; ASYMMETRY; CHEMISTRY; FE;
D O I
10.1021/acs.inorgchem.2c02383
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Addition of NO to a nonheme dithiolate-ligated iron(II) complex, FeII(Me3TACN)(S2SiMe2) (1), results in the generation of N2O. Low-temperature spectroscopic studies reveal a metastable six-coordinate {FeNO}7 intermediate (S = 3/2) that was trapped at -135 degrees C and was characterized by low-temperature UV-vis, resonance Raman, EPR, Mossbauer, XAS, and DFT studies. Thermal decay of the {FeNO}7 species leads to the evolution of N2O, providing a rare example of a mononuclear thiolate-ligated {FeNO}7 that mediates NO reduction to N2O without the requirement of any exogenous electron or proton sources.
引用
收藏
页码:14909 / 14917
页数:9
相关论文
共 50 条
  • [31] Theoretical Study of the Mechanism of Oxoiron(IV) Formation from H2O2 and a Nonheme Iron(II) Complex: O-O Cleavage Involving Proton-Coupled Electron Transfer
    Hirao, Hajime
    Li, Feifei
    Que, Lawrence, Jr.
    Morokuma, Keiji
    INORGANIC CHEMISTRY, 2011, 50 (14) : 6637 - 6648
  • [32] Electrochemical O2 reduction in presence of a Mn(II) complex. Formation and reactivity of a Mn(III)OO complex
    Anxolabehere-Mallart, E.
    Ching, V. H.
    Costentin, C.
    Robert, M.
    Policar, C.
    Dorlet, P.
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2014, 19 : S141 - S141
  • [33] A bridged di-iron porphyrin hyponitrite complex as a model for biological N2O production from hyponitrite
    Xu, Nan
    Abucayon, Erwin G.
    Powell, Douglas R.
    Richter-Addo, George B.
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2016, 52 : 16 - 20
  • [34] One- vs two-electron reduction of N2O promoted by a divalent chromium macrocyclic complex
    Dionne, M
    Jubb, J
    Jenkins, H
    Wong, S
    Gambarotta, S
    INORGANIC CHEMISTRY, 1996, 35 (07) : 1874 - 1879
  • [35] Denitrification under feast and famine - the role of the bc1 complex in securing electrons for N2O reduction
    Gao, Yuan
    Bakken, Lars R.
    Frostegard, Asa
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2022, 1863 : 72 - 72
  • [36] Theoretical Studies on N-O or N-N Bond Formation from Aryl Azide Catalyzed by Iron(II) Bromide Complex
    Li, Juan
    Zhang, Qi
    Zhou, Lixin
    JOURNAL OF ORGANIC CHEMISTRY, 2012, 77 (05): : 2566 - 2570
  • [37] REDUCTION OF 2,2,6,6-TETRAMETHYLPIPERIDINE NITROXIDE RADICAL VIA COMPLEX FORMATION WITH COPPER(II) PERCHLORATE
    PALEOS, CM
    KARAYANNIS, NM
    LABES, MM
    JOURNAL OF THE CHEMICAL SOCIETY D-CHEMICAL COMMUNICATIONS, 1970, (04): : 195 - +
  • [38] FORMATION OF A MU-ETA(2)ETA(2)-DISULFIDE DINUCLEAR COPPER(II) COMPLEX BY THERMAL-DECOMPOSITION OF A THIOLATE COMPLEX VIA C-S BOND-CLEAVAGE
    FUJISAWA, K
    MOROOKA, Y
    KITAJIMA, N
    JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1994, (05) : 623 - 624
  • [39] IRON(II) COMPLEXES WITH N4O2 POLYDENTATE LIGANDS AS MODELS FOR THE IRON(II) CENTER OF THE FERROQUINONE COMPLEX OF PHOTOSYSTEM-II AND BACTERIA
    PETROULEAS, V
    DINER, BA
    RAKOTONANDRASANA, AS
    TUCHAGUES, JP
    RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS-JOURNAL OF THE ROYAL NETHERLANDS CHEMICAL SOCIETY, 1987, 106 (6-7): : 220 - 220
  • [40] Denitrification by Bradyrhizobia under Feast and Famine and the Role of the bc1 Complex in Securing Electrons for N2O Reduction
    Gao, Yuan
    overlie Arntzen, Magnus
    Kjos, Morten
    Bakken, Lars R.
    Frostegard, Asa
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2023, 89 (02)