Prognostics Comparison of Lithium-Ion Battery Based on the Shallow and Deep Neural Networks Model

被引:27
|
作者
Long, Bing [1 ]
Li, Xiangnan [1 ]
Gao, Xiaoyu [1 ]
Liu, Zhen [1 ]
机构
[1] UESTC, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; prognostics; remaining useful life (RUL); nonlinear autoregressive (NAR); long-short term memory (LSTM); PARTICLE SWARM OPTIMIZATION; LIFE PREDICTION; DIAGNOSTICS;
D O I
10.3390/en12173271
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Prognostics of the remaining useful life (RUL) of lithium-ion batteries is a crucial role in the battery management systems (BMS). An artificial neural network (ANN) does not require much knowledge from the lithium-ion battery systems, thus it is a prospective data-driven prognostic method of lithium-ion batteries. Though the ANN has been applied in prognostics of lithium-ion batteries in some references, no one has compared the prognostics of the lithium-ion batteries based on different ANN. The ANN generally can be classified to two categories: the shallow ANN, such as the back propagation (BP) ANN and the nonlinear autoregressive (NAR) ANN, and the deep ANN, such as the long short-term memory (LSTM) NN. An improved LSTM NN is proposed in order to achieve higher prediction accuracy and make the construction of the model simpler. According to the lithium-ion data from the NASA Ames, the prognostics comparison of lithium-ion battery based on the BP ANN, the NAR ANN, and the LSTM ANN was studied in detail. The experimental results show: (1) The improved LSTM ANN has the best prognostic accuracy and is more suitable for the prediction of the RUL of lithium-ion batteries compared to the BP ANN and the NAR ANN; (2) the NAR ANN has better prognostic accuracy compared to the BP ANN.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Lifetime and Aging Degradation Prognostics for Lithium-ion Battery Packs Based on a Cell to Pack Method
    Yunhong Che
    Zhongwei Deng
    Xiaolin Tang
    Xianke Lin
    Xianghong Nie
    Xiaosong Hu
    Chinese Journal of Mechanical Engineering, 2022, (01) : 203 - 218
  • [42] Accurate prediction of remaining useful life for lithium-ion battery using deep neural networks with memory features
    Tarar, Muhammad Osama
    Naqvi, Ijaz Haider
    Khalid, Zubair
    Pecht, Michal
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [43] Comparative Analysis of Neural Networks Techniques for Lithium-ion Battery SOH Estimation
    Aliberti, Alessandro
    Boni, Filippo
    Perol, Alessandro
    Zampolli, Marco
    Jaboeuf, Remi Jacques Philibert
    Tosco, Paolo
    Macii, Enrico
    Patti, Edoardo
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 1355 - 1361
  • [44] Lithium-Ion Battery Remaining Useful Life Prognostics Using Data-Driven Deep Learning Algorithm
    Li, Lyu
    Song, Yuchen
    Peng, Yu
    Liu, Datong
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 1094 - 1100
  • [45] Lithium-Ion Battery Capacity Estimation Based on Incremental Capacity Analysis and Deep Convolutional Neural Network
    Zeng, Sibo
    Chen, Sheng
    Alkali, Babakalli
    ENERGIES, 2024, 17 (06)
  • [46] A new suitable feature selection and regression procedure for lithium-ion battery prognostics
    Ben Ali, Jaouher
    Saidi, Lotfi
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2018, 58 (02) : 102 - 115
  • [47] Internal Short Circuit Diagnosis of Lithium-Ion Battery Based on Mechanism Model and Deep Learning
    Liu, Yangyang
    Liao, Chenglin
    Zhang, Wenjie
    Hu, Guang
    Zhang, Chengzhong
    Wang, Liye
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (10)
  • [48] Diagnostics and Prognostics of Lithium-ion Batteries
    Xi, Zhimin
    Jing, Rong
    Lee, Cheol
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 2A, 2016,
  • [49] Life prediction of lithium-ion battery based on a hybrid model
    Chen, Xu-Dong
    Yang, Hai-Yue
    Wun, Jhang-Shang
    Wang, Ching-Hsin
    Li, Ling-Ling
    ENERGY EXPLORATION & EXPLOITATION, 2020, 38 (05) : 1854 - 1878
  • [50] Electrochemical Model Based Observer Design for a Lithium-Ion Battery
    Klein, Reinhardt
    Chaturvedi, Nalin A.
    Christensen, Jake
    Ahmed, Jasim
    Findeisen, Rolf
    Kojic, Aleksandar
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (02) : 289 - 301