The number of independent sets in a grid graph

被引:126
|
作者
Calkin, NJ [1 ]
Wilf, HS
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
independent sets; grid graphs;
D O I
10.1137/S089548019528993X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If f(m; n) is the (vertex) independence number of the m x n grid graph, then we show that the double limit eta [GRAPHICS] lim(m,n-->infinity);n ! f(m; n) 1/mn exists, thereby refining earlier results of Weber [Rostock. Math. Kolloq., 34 (1988), pp. 28-36] and Engel [Fibonacci Quart., 28 (1990), pp. 72-78]. We establish upper and lower bounds for eta and prove that 1.503047782... is less-than-or-equal-to eta less-than-or-equal to 1.5035148.... Numerical computations suggest that the true value of eta (the "hard square constant") is around 1.5030480824753323....
引用
收藏
页码:54 / 60
页数:7
相关论文
共 50 条
  • [11] An upper bound for the number of maximal independent sets in a graph
    Alekseev, V. E.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2007, 17 (04): : 355 - 359
  • [12] On graph entropy measures based on the number of independent sets and matchings
    Wan, Pengfei
    Chen, Xinzhuang
    Tu, Jianhua
    Dehmer, Matthias
    Zhang, Shenggui
    Emmert-Strei, Frank
    INFORMATION SCIENCES, 2020, 516 (516) : 491 - 504
  • [13] Approximate the chromatic number of a graph using maximal independent sets
    Guzman-Ponce, Angelica
    Raymundo Marcial-Romero, J.
    De Ita, Guillermo
    Hernandez, Jose A.
    2016 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND COMPUTERS (CONIELECOMP), 2016, : 19 - 24
  • [14] Graph Partitioning for Independent Sets
    Lamm, Sebastian
    Sanders, Peter
    Schulz, Christian
    EXPERIMENTAL ALGORITHMS, SEA 2015, 2015, 9125 : 68 - 81
  • [15] NUMBER OF PARITY SETS IN A GRAPH
    LITTLE, CHC
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (06): : 1167 - 1171
  • [16] The Number of Independent Sets in Graphs
    Sapozhenko, A. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2007, 62 (03) : 116 - 118
  • [17] On the number of independent sets in expanders
    Sapozhenko, A.A.
    Discrete Mathematics and Applications, 2001, 11 (02): : 155 - 161
  • [18] On the number of independent sets in a tree
    Law, Hiu-Fai
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [19] Independent bondage number of a graph
    Priddy, Bruce
    Wang, Haiying
    Wei, Bing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) : 702 - 712
  • [20] The independent neighbourhood number of a graph
    Kulli, VR
    Soner, ND
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1996, 19 (7-8): : 159 - 161