Prototyping a Compressive Line Sensing Hyperspectral Imaging Sensor

被引:2
|
作者
Ouyang, Bing [1 ]
Twardowski, Michael [1 ]
Caimi, Frank [1 ]
Dalgleish, Fraser [1 ]
Gong, Cuiling [2 ]
Li, Yanjun [1 ]
机构
[1] Florida Atlantic Univ, Harbor Branch Oceanog Inst, 5600 US1 North, Ft Pierce, FL 34946 USA
[2] Texas Christian Univ, Dept Engn, TCU BOX 298640, Ft Worth, TX 76129 USA
关键词
D O I
10.1117/12.2511981
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In many space-borne surveillance missions, hyperspectral imaging (HSI) sensors are essential to enhance the ability to analyze and classify oceanic and terrestrial parameters and objects/areas of interest. A significant technical challenge is that the amount of raw data acquired by these sensors will begin to exceed the data transmission bandwidths between the spacecraft and the ground station using classical approaches such as imaging onto a detector array. To address such an issue, the compressive line sensing (CLS) imaging concept, originally developed for energy-efficient active laser imaging, is adopted in the design of a hyperspectral imaging sensor. CLS HSI imaging is achieved using a digital micromirror device (DMD) spatial light modulator. A DMD generates a series of 2D binary sensing patterns from a codebook that can be used to encode cross-track spatial-spectral slices in a push-broom type imaging device. In this paper, the development of a testbed using the TI DLP NIRscan (TM) Nano Evaluation Module to investigate the CLS HSI concept is presented. Initial test results are discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Feasibility of a Real-Time Embedded Hyperspectral Compressive Sensing Imaging System
    Lim, Olivier
    Mancini, Stephane
    Dalla Mura, Mauro
    [J]. SENSORS, 2022, 22 (24)
  • [32] The Development of an Underwater Pulsed Compressive Line Sensing Imaging System
    Ouyang, Bing
    Gong, Sue
    Hou, Weilin
    Dalgleish, Fraser R.
    Caimi, Frank M.
    Vuorenkoski, Anni K.
    [J]. OCEAN SENSING AND MONITORING IX, 2017, 10186
  • [33] Compressive Sensing for Imaging
    Ahmad, Fauzia
    Arce, Gonzalo
    Narayanan, Ram
    Pados, Dimitris
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2013, 22 (02)
  • [34] Compressive Hyperspectral Imaging for Stellar Spectroscopy
    Fickus, Matthew
    Lewis, Megan E.
    Mixon, Dustin G.
    Peterson, Jesse
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 1829 - 1833
  • [35] Compressive Hyperspectral Imaging With Side Information
    Yuan, Xin
    Tsai, Tsung-Han
    Zhu, Ruoyu
    Llull, Patrick
    Brady, David
    Carin, Lawrence
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (06) : 964 - 976
  • [36] Experimental studies of the compressive line sensing underwater serial imaging system
    Ouyang, Bing
    Hou, Weilin
    Dalgleish, Fraser R.
    Caimi, Frank M.
    Nootz, Gero
    Vuorenkoski, Anni K.
    [J]. OCEAN SENSING AND MONITORING VI, 2014, 9111
  • [37] Compressive line sensing imaging system in a controlled hybrid scattering environment
    Ouyang, Bing
    Hau, Weilin
    [J]. OPTICAL ENGINEERING, 2019, 58 (02)
  • [38] Experimental study of a compressive line sensing imaging system in a turbulent environment
    Ouyang, Bing
    Hou, Weilin
    Gong, Cuiling
    Dalgleish, Fraser R.
    Caimi, Frank M.
    Vuorenkoski, Anni K.
    Nootz, Gero
    Xiao, Xifeng
    Voelz, David G.
    [J]. APPLIED OPTICS, 2016, 55 (30) : 8523 - 8531
  • [39] 3D imaging using compressive line sensing serial imaging system
    Ouyang, Bing
    Caimi, Frank M.
    Dalgleish, Fraser R.
    Nootz, Gero
    Vuorenkoski, Anni K.
    [J]. COMPRESSIVE SENSING III, 2014, 9109
  • [40] Hyperspectral Image Classification via Compressive Sensing
    Della Porta, Charles J.
    Bekit, Adam A.
    Lampe, Bernard H.
    Chang, Chein-, I
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 8290 - 8303