Algorithms for solving scattering problems for the Manakov model of nonlinear Schrodinger equations

被引:6
|
作者
Frumin, Leonid L. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Automat & Electrometry, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
来源
基金
俄罗斯科学基金会;
关键词
Nonlinear; polarization; inverse; scattering; algorithm; soliton; EFFICIENT NUMERICAL-METHOD; INVERSE SCATTERING; TRANSMISSION; SOLITONS;
D O I
10.1515/jiip-2020-0126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce numerical algorithms for solving the inverse and direct scattering problems for the Manakov model of vector nonlinear Schrodinger equation. We have found an algebraic group of 4-block matrices with off-diagonal blocks consisting of special vector-like matrices for generalizing the scalar problem's efficient numerical algorithms to the vector case. The inversion of block matrices of the discretized system of Gelfand-Levitan-Marchenko integral equations solves the inverse scattering problem using the vector variant the Toeplitz Inner Bordering algorithm of Levinson's type. The reversal of steps of the inverse problem algorithm gives the solution of the direct scattering problem. Numerical tests confirm the proposed vector algorithms' efficiency and stability. We also present an example of the algorithms' application to simulate the Manakov vector solitons' collision.
引用
收藏
页码:369 / 383
页数:15
相关论文
共 50 条
  • [21] RECURSIVE ALGORITHMS FOR SOLVING A CLASS OF NONLINEAR MATRIX EQUATIONS WITH APPLICATIONS TO CERTAIN SENSITIVITY OPTIMIZATION PROBLEMS
    YAN, WY
    MOORE, JB
    HELMKE, U
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (06) : 1559 - 1576
  • [22] New algorithms for solving nonlinear mixed integral equations
    Matoog, R. T.
    Abdou, M. A.
    Abdel-Aty, M. A.
    AIMS MATHEMATICS, 2023, 8 (11): : 27488 - 27512
  • [23] Applying genetic algorithms for solving nonlinear algebraic equations
    Pourrajabian, Abolfazl
    Ebrahimi, Reza
    Mirzaei, Masoud
    Shams, Mehrzad
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11483 - 11494
  • [24] Importance modeling algorithms for solving nonlinear kinetic equations
    G. A. Mikhailov
    M. A. Korotchenko
    S. V. Rogasinsky
    Doklady Mathematics, 2007, 76 : 502 - 505
  • [26] SOME EFFICIENT ALGORITHMS FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS
    BRENT, RP
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) : 327 - 344
  • [27] Importance modeling algorithms for solving nonlinear kinetic equations
    Mikhailov, Ras G. A.
    Korotchenko, M. A.
    Rogasinsky, S. V.
    DOKLADY MATHEMATICS, 2007, 76 (01) : 502 - 505
  • [28] Scattering of solitons in the derivative nonlinear Schrodinger model
    Min, H
    Park, QH
    PHYSICS LETTERS B, 1996, 388 (03) : 621 - 625
  • [29] KINETIC AND HYDRODYNAMIC EQUATIONS IN THE NONLINEAR SCHRODINGER MODEL
    SANKOVICH, DP
    DOKLADY AKADEMII NAUK SSSR, 1988, 298 (02): : 342 - 346
  • [30] Scattering theory for radial nonlinear Schrodinger equations on hyperbolic space
    Banica, Valeria
    Carles, Remi
    Staffilani, Gigliola
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (02) : 367 - 399