Algorithms for solving scattering problems for the Manakov model of nonlinear Schrodinger equations

被引:6
|
作者
Frumin, Leonid L. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Automat & Electrometry, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
来源
基金
俄罗斯科学基金会;
关键词
Nonlinear; polarization; inverse; scattering; algorithm; soliton; EFFICIENT NUMERICAL-METHOD; INVERSE SCATTERING; TRANSMISSION; SOLITONS;
D O I
10.1515/jiip-2020-0126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce numerical algorithms for solving the inverse and direct scattering problems for the Manakov model of vector nonlinear Schrodinger equation. We have found an algebraic group of 4-block matrices with off-diagonal blocks consisting of special vector-like matrices for generalizing the scalar problem's efficient numerical algorithms to the vector case. The inversion of block matrices of the discretized system of Gelfand-Levitan-Marchenko integral equations solves the inverse scattering problem using the vector variant the Toeplitz Inner Bordering algorithm of Levinson's type. The reversal of steps of the inverse problem algorithm gives the solution of the direct scattering problem. Numerical tests confirm the proposed vector algorithms' efficiency and stability. We also present an example of the algorithms' application to simulate the Manakov vector solitons' collision.
引用
收藏
页码:369 / 383
页数:15
相关论文
共 50 条
  • [1] Algorithms for Solving the Inverse Scattering Problem for the Manakov Model
    Belai, O. V.
    Frumin, L. L.
    Chernyavsky, A. E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (03) : 453 - 464
  • [2] Blowup and scattering problems for the nonlinear Schrodinger equations
    Akahori, Takafumi
    Nawa, Hayato
    KYOTO JOURNAL OF MATHEMATICS, 2013, 53 (03) : 629 - 672
  • [3] SCATTERING AND BLOWUP PROBLEMS FOR A CLASS OF NONLINEAR SCHRODINGER EQUATIONS
    Akahori, Takafumi
    Kikuchi, Hiroaki
    Nawa, Hayato
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (11-12) : 1075 - 1118
  • [4] Remarks on scattering for nonlinear Schrodinger equations
    Nakanishi, K
    Ozawa, T
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (01): : 45 - 68
  • [5] Scattering for Stochastic Nonlinear Schrodinger Equations
    Herr, Sebastian
    Roeckner, Michael
    Zhang, Deng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 368 (02) : 843 - 884
  • [6] Quasi-periodic and periodic solutions for coupled nonlinear Schrodinger equations of Manakov type
    Christiansen, PL
    Eilbeck, JC
    Enolskii, VZ
    Kostov, NA
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001): : 2263 - 2281
  • [7] SCATTERING PROBLEM FOR NONLINEAR SCHRODINGER-EQUATIONS
    TSUTSUMI, Y
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1985, 43 (03): : 321 - 347
  • [8] ALGORITHMS FOR SOLVING NONLINEAR ESTIMATION PROBLEMS
    GONIN, R
    SOUTH AFRICAN STATISTICAL JOURNAL, 1983, 17 (02) : 182 - 182
  • [9] An efficient approach for solving nonlinear multidimensional Schrodinger equations
    Karabas, Neslisah Imamoglu
    Korkut, Sila Ovgu
    Tanoglu, Gamze
    Aziz, Imran
    Siraj-ul-Islam
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 132 (132) : 263 - 270
  • [10] A RELIABLE ALGORITHM FOR SOLVING LINEAR AND NONLINEAR SCHRODINGER EQUATIONS
    Momani, Shaher
    Abu Arqub, Omar
    Maayah, Banan
    Yousef, Feras
    Alsaedi, Ahmed
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2018, 17 (02) : 151 - 160