ON THE NUMBER OF RATIONAL POINTS ON PRYM VARIETIES OVER FINITE FIELDS

被引:2
|
作者
Aubry, Yves [1 ,2 ]
Haloui, Safia [3 ]
机构
[1] Univ Toulon & Var, Inst Math Toulon, F-83957 La Garde, France
[2] Aix Marseille Univ, Inst Math Marseille, F-13288 Marseille, France
[3] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
关键词
JACOBIAN VARIETIES;
D O I
10.1017/S0017089515000063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give upper and lower bounds for the number of rational points on Prym varieties over finite fields. Moreover, we determine the exact maximum and minimum number of rational points on Prym varieties of dimension 2.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 50 条
  • [31] Counting rational points of two classes of algebraic varieties over finite fields
    Zhu, Guangyan
    Qiang, Shiyuan
    Li, Mao
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 30511 - 30526
  • [32] Weil polynomials of abelian varieties over finite fields with many rational points
    Berardini, Elena
    Giangreco-Maidana, Alejandro J.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (07) : 1591 - 1603
  • [33] Rational points and zero-cycles on rationally connected varieties over number fields
    Wittenberg, Olivier
    [J]. ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 597 - 635
  • [34] Lower bounds on the maximal number of rational points on curves over finite fields
    Bergstrom, Jonas
    Howe, Everett w.
    Garcia, Elisa Lorenzo
    Ritzenthaler, Christophe
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) : 213 - 238
  • [35] The number of rational points of certain quartic diagonal hypersurfaces over finite fields
    Zhao, Junyong
    Hong, Shaofang
    Zhu, Chaoxi
    [J]. AIMS MATHEMATICS, 2020, 5 (03): : 2710 - 2731
  • [36] On the number of rational points on some families of Fermat curves over finite fields
    Moisio, Marko
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) : 546 - 562
  • [37] Rational points in flag varieties over function fields
    Lai, KF
    Yeung, KM
    [J]. JOURNAL OF NUMBER THEORY, 2002, 95 (02) : 142 - 149
  • [38] RATIONAL POINTS OF ABELIAN VARIETIES OVER FUNCTION FIELDS
    LANG, S
    NERON, A
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (01) : 95 - 118
  • [39] RATIONAL POINTS OF ABELIAN VARIETIES WITH VALUES IN TOWERS OF NUMBER FIELDS
    MAZUR, B
    [J]. INVENTIONES MATHEMATICAE, 1972, 18 (3-4) : 183 - 266
  • [40] DESCENT FOR RATIONAL VARIETIES DEFINED OVER NUMBER FIELDS
    COLLIOTTHELENE, JL
    SANSUC, JJ
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (19): : 1215 - 1218