A discrete maximum principle for the weak Galerkin finite element method on nonuniform rectangular partitions

被引:2
|
作者
Liu, Yujie [1 ,2 ]
Wang, Junping [3 ]
机构
[1] Ctr Quantum Comp, Peng Cheng Lab, Shenzhen 518005, Guangdong, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan, Hubei, Peoples R China
[3] Natl Sci Fdn, Div Math Sci, Alexandria, VA USA
基金
美国国家科学基金会;
关键词
discrete maximum principle; finite difference method; finite element method; second order elliptic equations; simplified weak Galerkin; SCHEMES; EQUATIONS;
D O I
10.1002/num.22440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article establishes a discrete maximum principle (DMP) for the approximate solution of convection-diffusion-reaction problems obtained from the weak Galerkin (WG) finite element method on nonuniform rectangular partitions. The DMP analysis is based on a simplified formulation of the WG involving only the approximating functions defined on the boundary of each element. The simplified weak Galerkin (SWG) method has a reduced computational complexity over the usual WG, and indeed provides a discretization scheme different from the WG when the reaction terms are present. An application of the SWG on uniform rectangular partitions yields some 5- and 7-point finite difference schemes for the second order elliptic equation. Numerical experiments are presented to verify the DMP and the accuracy of the scheme, particularly the finite difference scheme.
引用
下载
收藏
页码:552 / 578
页数:27
相关论文
共 50 条
  • [31] Weak Galerkin finite element method for viscoelastic wave equations
    Wang, Xiuping
    Gao, Fuzheng
    Sun, Zhengjia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375
  • [32] A Modified Weak Galerkin Finite Element Method for the Poroelasticity Problems
    Wang, Ruishu
    Wang, Xiaoshen
    Zhang, Ran
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (03) : 518 - 539
  • [33] A HYBRIDIZED WEAK GALERKIN FINITE ELEMENT METHOD FOR THE BIHARMONIC EQUATION
    Wang, Chunmei
    Wang, Junping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 302 - 317
  • [34] A hybridized formulatibn for the weak Galerkin mixed finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 307 : 335 - 345
  • [35] A WEAK GALERKIN FINITE ELEMENT METHOD FOR NONLINEAR CONSERVATION LAWS
    Ye, Xiu
    Zhang, Shangyou
    Zhu, Peng
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (01): : 1897 - 1923
  • [36] Weak Galerkin finite element method for valuation of American options
    Zhang, Ran
    Song, Haiming
    Luan, Nana
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (02) : 455 - 476
  • [37] A Weak Galerkin Harmonic Finite Element Method for Laplace Equation
    Al-Taweel, Ahmed
    Dong, Yinlin
    Hussain, Saqib
    Wang, Xiaoshen
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) : 527 - 543
  • [38] Weak Galerkin finite element method for linear poroelasticity problems
    Gu, Shanshan
    Chai, Shimin
    Zhou, Chenguang
    Zhou, Jinhui
    APPLIED NUMERICAL MATHEMATICS, 2023, 190 : 200 - 219
  • [39] A new weak Galerkin finite element method for the Helmholtz equation
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) : 1228 - 1255
  • [40] A HYBRIDIZED WEAK GALERKIN FINITE ELEMENT METHOD FOR THE BIHARMONIC EQUATION
    Wang, Chunmei
    Wang, Junping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (02) : 302 - +