The dissociation of low energy 1,2-propanediol ions: an intriguing mechanism revisited

被引:11
|
作者
Burgers, PC
Fell, LM
Milliet, A
Rempp, M
Ruttink, PJA
Terlouw, JK
机构
[1] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
[2] Ecole Polytech, DCMR, F-91128 Palaiseau, France
[3] Hercules European Res Ctr BV, NL-3771 ME Barneveld, Netherlands
[4] Univ Utrecht, Dept Chem, Theoret Chem Grp, NL-3584 CH Utrecht, Netherlands
关键词
tandem mass spectrometry; ion-neutral complex; ab initio calculation; 1,2-propanediol;
D O I
10.1016/S0168-1176(97)00076-1
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The fascinating unimolecular chemistry of ionized 1,2-propanediol, CH3C(H)OHCH2OH.+, 1, has been re-examined using computational chemistry tab initio MO and density functional theories) in conjunction with modern tandem mass spectrometric and C-13 labelling experiments. The calculations allow a considerable simplification of a previously proposed complex mechanism (Org. Mass Spectrom., 23 (1988) 355). Again, the central intermediates are proposed to be stable hydrogen bridged ion-dipole complexes, but our present calculations indicate that the key transformation now is the rearrangement CH3C(H)OH+... O(H)-CH2. --> CH3C(H)OH+... (OCH3)-O-., which can best be viewed as the cation-catalyzed 1,2-hydrogen shift (CH2OH)-C-. --> CH3O., a rearrangement which does not occur so easily in the unassisted system. Another important process is the electron transfer CH3C(H)=O ... CH3OH.+ ... O(H)CH3 which allows proton transfer to generate CH3OH2+ + CH3C=O-.. Other dissociation processes (loss of CH3., H2O, H2O + CH3., H2O + CH4) are interpreted in terms of Bohme's 'methyl cation shuttle' (J. Am. Chem. Soc., 118 (1996) 4500) taking place in ion-dipole complexes. The most stable intermediate is the hydrogen bridged ion-dipole complex CH2=CHOH.+... O(H)CH3, which is the reacting configuration for loss of methanol. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 50 条
  • [31] New Trends and Perspectives in Production of 1,2-Propanediol
    Glowka, Marek
    Krawczyk, Tomasz
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (19) : 7274 - 7287
  • [32] FERMENTATION OF 1,2-PROPANEDIOL BY PROPIONIBACTERIUM-FREUDENREICHII
    ICHIKAWA, Y
    HOSOI, N
    KITAMOTO, Y
    HAKKOKOGAKU KAISHI-JOURNAL OF THE SOCIETY OF FERMENTATION TECHNOLOGY, 1977, 55 (01): : 15 - 21
  • [33] Cofactor uptake in 1,2-propanediol metabolising microcompartments
    Mayer, Matthias
    Frank, Stefanie
    Deery, Evelyne
    Lawrence, Andrew
    Smales, Mark
    Warren, Martin
    NEW BIOTECHNOLOGY, 2014, 31 : S22 - S23
  • [34] Metabolic engineering of yeast for the production of 1,2-propanediol
    Da Silva, NA
    Lee, WY
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U222 - U223
  • [35] CONFORMATION AND HYDROGEN-BOND IN 1,2-PROPANEDIOL
    CAMINATI, W
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1981, 86 (01) : 193 - 201
  • [36] 1,2-PROPANEDIOL AS A CRYOPROTECTANT FOR HUMAN-SPERM
    COLVIN, KE
    SLAKES, S
    CRITSER, ES
    CRITSER, JK
    JOURNAL OF ANDROLOGY, 1988, 9 (01): : P32 - P32
  • [37] THE PRODUCTION OF 1,2-PROPANEDIOL IN ETHANOL TREATED RATS
    CASAZZA, JP
    VEECH, RL
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1985, 129 (02) : 426 - 430
  • [38] STUDIES ON THE METABOLISM OF 1,2-PROPANEDIOL PHOSPHATE IN YEAST
    HUGGINS, CG
    MILLER, ON
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1956, 221 (02) : 719 - 725
  • [39] DIASTEREOMERS OF 1,3-DIPHENYL-1,2-PROPANEDIOL
    BONNER, WA
    RAUNIO, EK
    JOURNAL OF ORGANIC CHEMISTRY, 1966, 31 (01): : 291 - &
  • [40] Characterization of the 1,2-propanediol plus benzene and 1,2-propanediol + benzene-d6 liquid-liquid phase equilibria
    Riley, Kayla
    Tibbetts, Clara
    McKibben, Makayla
    Williamson, Chuck
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254