The dissociation of low energy 1,2-propanediol ions: an intriguing mechanism revisited

被引:11
|
作者
Burgers, PC
Fell, LM
Milliet, A
Rempp, M
Ruttink, PJA
Terlouw, JK
机构
[1] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
[2] Ecole Polytech, DCMR, F-91128 Palaiseau, France
[3] Hercules European Res Ctr BV, NL-3771 ME Barneveld, Netherlands
[4] Univ Utrecht, Dept Chem, Theoret Chem Grp, NL-3584 CH Utrecht, Netherlands
关键词
tandem mass spectrometry; ion-neutral complex; ab initio calculation; 1,2-propanediol;
D O I
10.1016/S0168-1176(97)00076-1
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The fascinating unimolecular chemistry of ionized 1,2-propanediol, CH3C(H)OHCH2OH.+, 1, has been re-examined using computational chemistry tab initio MO and density functional theories) in conjunction with modern tandem mass spectrometric and C-13 labelling experiments. The calculations allow a considerable simplification of a previously proposed complex mechanism (Org. Mass Spectrom., 23 (1988) 355). Again, the central intermediates are proposed to be stable hydrogen bridged ion-dipole complexes, but our present calculations indicate that the key transformation now is the rearrangement CH3C(H)OH+... O(H)-CH2. --> CH3C(H)OH+... (OCH3)-O-., which can best be viewed as the cation-catalyzed 1,2-hydrogen shift (CH2OH)-C-. --> CH3O., a rearrangement which does not occur so easily in the unassisted system. Another important process is the electron transfer CH3C(H)=O ... CH3OH.+ ... O(H)CH3 which allows proton transfer to generate CH3OH2+ + CH3C=O-.. Other dissociation processes (loss of CH3., H2O, H2O + CH3., H2O + CH4) are interpreted in terms of Bohme's 'methyl cation shuttle' (J. Am. Chem. Soc., 118 (1996) 4500) taking place in ion-dipole complexes. The most stable intermediate is the hydrogen bridged ion-dipole complex CH2=CHOH.+... O(H)CH3, which is the reacting configuration for loss of methanol. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 50 条
  • [2] THE METABOLISM OF 1,2-PROPANEDIOL
    RUDNEY, H
    ARCHIVES OF BIOCHEMISTRY, 1950, 29 (01): : 231 - 232
  • [3] METABOLISM OF 1,2-PROPANEDIOL
    HUFF, E
    BIOCHIMICA ET BIOPHYSICA ACTA, 1961, 48 (03) : 506 - &
  • [4] POLAROGRAPHY IN 1,2-PROPANEDIOL CARBONATE .4. IONS OF LANTHANOIDS
    PEYCHALHEILING, G
    GUTMANN, V
    ZEITSCHRIFT FUR ANALYTISCHE CHEMIE FRESENIUS, 1969, 248 (1-2): : 6 - +
  • [5] KINETICS OF OXIDATION OF 1,2-PROPANEDIOL BY PEROXYDISULPHATE CATALYSED BY SILVER IONS
    MENGHANI, GD
    BAKORE, GV
    INDIAN JOURNAL OF CHEMISTRY, 1969, 7 (08): : 786 - &
  • [6] Microwave spectrum of 1,2-propanediol
    Lovas, F. J.
    Plusquellic, D. F.
    Pate, Brooks H.
    Neill, Justin L.
    Muckle, Matthew T.
    Remijan, Anthony J.
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2009, 257 (01) : 82 - 93
  • [7] Determination of 1,2-propanediol in silage
    Bareth, A
    Strohmar, W
    Kitzelmann, E
    JOURNAL OF SEPARATION SCIENCE, 2002, 25 (03): : 183 - 185
  • [8] METABOLISM OF 1,2-PROPANEDIOL BY METHANOL-UTILIZING BACTERIA AND SOME PROPERTIES OF 1,2-PROPANEDIOL DEHYDROGENATING ENZYME
    NISHIO, N
    KAWAGISHI, T
    MATSUNO, R
    KAMIKUBO, T
    AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1978, 42 (06): : 1095 - 1100
  • [9] EXCESS MOLAR VOLUMES OF (WATER + 1,2-PROPANEDIOL), (METHANOL + 1,2-PROPANEDIOL), AND (WATER + METHANOL + 1,2-PROPANEDIOL) AT 283.15-K, 298.15-K, AND 303.15-K
    LEE, H
    JOURNAL OF CHEMICAL THERMODYNAMICS, 1990, 22 (05): : 463 - 468
  • [10] REGIOSELECTIVE PYRANYLATION OF (S)-1,2-PROPANEDIOL
    MALANGA, C
    SPASSKY, N
    MENICAGLI, R
    CHIELLINI, E
    SYNTHETIC COMMUNICATIONS, 1982, 12 (01) : 67 - 70