Long lifetime of thermally excited magnons in bulk yttrium iron garnet

被引:18
|
作者
Jamison, John S. [1 ]
Yang, Zihao [2 ]
Giles, Brandon L. [1 ]
Brangham, Jack T. [3 ]
Wu, Guanzhong [3 ]
Hammel, P. Chris [3 ]
Yang, Fengyuan [3 ]
Myers, Roberto C. [1 ,2 ,3 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA
关键词
SPIN; CONSTANTS;
D O I
10.1103/PhysRevB.100.134402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spin currents are generated within the bulk of magnetic materials due to heat flow, an effect called intrinsic spin Seebeck. This bulk bosonic spin current consists of a diffusing thermal magnon cloud, parametrized by the magnon chemical potential (mu(m)), with a diffusion length of several microns in yttrium iron garnet (YIG). Transient optothermal measurements of the spin-Seebeck effect (SSE) as a function of temperature reveal the time evolution of mu(m) due to intrinsic SSE in YIG. The interface SSE develops at times <2 ns while the intrinsic SSE signal continues to evolve at times >500 mu s, dominating the temperature dependence of SSE in bulk YIG. Time-dependent SSE data are fit to a multitemperature model of coupled spin/heat transport using the finite-element method (FEM), where the magnon spin lifetime (tau) and magnon-phonon thermalization time (tau(mp)) are used as fit parameters. From 300 to 4 K, tau(mp) varies from 1 to 10 ns, whereas tau varies from 2 to 60 mu s with the spin lifetime peaking at 90 K. At low temperature, a reduction in tau is observed consistent with impurity relaxation reported in ferromagnetic resonance measurements. These results demonstrate that the thermal magnon cloud in YIG contains extremely low-frequency magnons (similar to 10 GHz), providing spectral insight to the microscopic scattering processes involved in magnon spin/heat diffusion.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Long-Lived Induction Signal in Yttrium Iron Garnet
    Yu. M. Bunkov
    P. M. Vetoshko
    A. N. Kuzmichev
    G. V. Mamin
    S. B. Orlinskii
    T. R. Safin
    V. I. Belotelov
    M. S. Tagirov
    JETP Letters, 2020, 111 : 62 - 66
  • [32] Bragg Resonances in a Yttrium Iron Garnet–Platinum–Yttrium Iron Garnet Layered Structure
    Lobanov N.D.
    Matveev O.V.
    Morozova M.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (02) : 254 - 259
  • [33] Long-Lived Induction Signal in Yttrium Iron Garnet
    Bunkov, Yu. M.
    Vetoshko, P. M.
    Kuzmichev, A. N.
    Mamin, G. V.
    Orlinskii, S. B.
    Safin, T. R.
    Belotelov, V. I.
    Tagirov, M. S.
    JETP LETTERS, 2020, 111 (01) : 62 - 66
  • [34] Thermal properties of magnons and the spin Seebeck effect in yttrium iron garnet/normal metal hybrid structures
    Rezende, S. M.
    Rodriguez-Suarez, R. L.
    Lopez Ortiz, J. C.
    Azevedo, A.
    PHYSICAL REVIEW B, 2014, 89 (13):
  • [35] Magnetic Field and Temperature-Dependent Brillouin Light Scattering Spectra of Magnons in Yttrium Iron Garnet
    Pang, Simin
    Xie, Yaru
    Shen, Chao
    Zhang, Jun
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (31): : 6977 - 6981
  • [36] Bose-Einstein Condensation and Spin Superfluidity of Magnons in a Perpendicularly Magnetized Yttrium Iron Garnet Film
    Vetoshko, P. M.
    Knyazev, G. A.
    Kuzmichev, A. N.
    Kholin, A. A.
    Belotelov, V. I.
    Bunkov, Yu. M.
    JETP LETTERS, 2020, 112 (05) : 299 - 304
  • [38] PHOTOCONDUCTIVITY OF YTTRIUM IRON-GARNET SINGLE CRYSTAL-BULK AND FILM
    SURYANARAYANAN, R
    KRISHNAN, R
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1974, 22 (02): : K177 - K180
  • [39] MAGNETOSTRICTION OF YTTRIUM IRON GARNET
    ANDRES, K
    LUTHI, B
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1963, 24 (04) : 584 - &
  • [40] MAGNETOSTRICTION OF YTTRIUM IRON GARNET
    NAKAMURA, A
    SUGIURA, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1960, 15 (09) : 1704 - 1704