Apsidal Precession Effects on the Lunar-Based Synthetic Aperture Radar Imaging Performance

被引:6
|
作者
Xu, Zhen [1 ,2 ]
Chen, Kun-Shan [1 ,2 ]
Li, Zhao-Liang [3 ,4 ]
Du, Gen-Yuan [5 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] CNRS, ICube UMR 7357, UdS, CS 10413, F-67412 Illkirch Graffenstaden, France
[4] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
[5] Xuchang Univ, Sch Informat Engn, Xuchang 461000, Peoples R China
基金
中国国家自然科学基金;
关键词
Doppler effect; Moon; Azimuth; Orbits; Imaging; Synthetic aperture radar; Earth; Apsidal precession; Doppler error; focusing quality; geometric location; lunar-based (LB) synthetic aperture radar (SAR); signal distortions; EARTH OBSERVATION;
D O I
10.1109/LGRS.2020.2992508
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
There have been considerable interests in the lunar-based synthetic aperture radar (LBSAR) for monitoring large-scale geoscience phenomena. However, the signal distortions given rise by lunar orbital perturbations, especially the apsidal precession, are particularly severe in the LBSAR. The apsidal precession effects can induce a coordinate drift of the LBSAR, which can further lead to the variation in the range history of the LBSAR. As a result, LBSAR's image performance might be affected. In this letter, we thoroughly investigate whether the apsidal precession effects cause the phase decorrelation in the signal of the LBSAR, and how such effects impact the LBSAR imaging. The theoretical result shows that the impact of the lunar apsidal precession mainly results in the first-order and second-order Doppler errors, which further influence the geometric location and focusing quality along the azimuth direction. Numerical simulations using the point target response show good consistency with the theoretical analysis. To this end, the lunar apsidal precession effects deserve special care in the LBSAR for high imaging quality.
引用
收藏
页码:1079 / 1083
页数:5
相关论文
共 50 条
  • [21] Polarimetric synthetic aperture radar imaging
    Novak, L.M.
    Netishen, C.M.
    International Journal of Imaging Systems and Technology, 1992, 4 (04) : 306 - 318
  • [22] Synthetic Aperture Radar Correlation Imaging
    Voccola, Kaitlyn
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (01): : 299 - 330
  • [23] Effects of the Earths Irregular Rotation on the Moon-Based Synthetic Aperture Radar Imaging
    Xu, Zhen
    Chen, Kun-Shan
    Zhou, Guoqing
    IEEE ACCESS, 2019, 7 : 155014 - 155027
  • [24] COMPRESSED SYNTHETIC APERTURE RADAR IMAGING BASED ON MAXWELL EQUATION
    Arief, Rahmat
    Sudiana, Dodi
    Ramli, Kalamullah
    JURNAL TEKNOLOGI, 2016, 78 (6-3): : 15 - 22
  • [25] Synthetic Aperture Radar Increment Imaging Based on Compressed Sensing
    Geng, Jiwen
    Yu, Ze
    Li, Chunsheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] A Backprojection-Based Imaging for Circular Synthetic Aperture Radar
    Chen, Leping
    An, Daoxiang
    Huang, Xiaotao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) : 3547 - 3555
  • [27] Sparse representation-based synthetic aperture radar imaging
    Samadi, S.
    Cetin, M.
    Masnadi-Shirazi, M. A.
    IET RADAR SONAR AND NAVIGATION, 2011, 5 (02): : 182 - 193
  • [28] Performance comparison of DAS and BP algorithms for Synthetic Aperture Radar Imaging
    Sowjanya, L. S. Lakshmi
    Kumar, Puli Kishore
    2022 IEEE MICROWAVES, ANTENNAS, AND PROPAGATION CONFERENCE, MAPCON, 2022, : 1726 - 1731
  • [29] Sparse Aperture Inverse Synthetic Aperture Radar Imaging Based on Gridless Compressive Sensing
    Wu, Weitao
    Li, Zhaolong
    2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,
  • [30] Sparse synthetic aperture radar imaging with optimized azimuthal aperture
    Zeng Cao
    Wang MinHang
    Liao GuiSheng
    Zhu ShengQi
    SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (08) : 1852 - 1859