An Enriched Edge-Based Smoothed FEM for Linear Elastic Fracture Problems

被引:8
|
作者
Yang, Yongtao [1 ]
Zheng, Hong [2 ]
Du, Xiuli [2 ]
机构
[1] Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan 430071, Hubei, Peoples R China
[2] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method (FEM); edge-based smoothed FEM (ES-FEM); enriched edge-based smoothed FEM (eES-FEM); stress intensity factors (SIFs); generalized Galerkin method; FINITE-ELEMENT-METHOD; FATIGUE-CRACK PROPAGATION; NUMERICAL MANIFOLD METHOD; SINGULAR ES-FEM; MECHANICS PROBLEMS; NODAL INTEGRATION; MESHLESS METHOD; SIMULATION; PARTITION;
D O I
10.1142/S0219876217500529
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the edge-based smoothed FEM (ES-FEM) and the partition of unity, the first major items of Williams' series for the displacement field near the crack tip are incorporated in the test and trial function space, resulting in the enriched ES-FEM formulation, eEF-FEM. The eES-FEM does not differentiate any shape functions, avoiding the treatment of the 1/r singularity in computing the stiffness matrix. The complexity of computation is accordingly reduced. Meanwhile, it is pointed out that the variational foundation of the eES-FEM is the generalized Galerkin method. Typical numerical examples are analyzed, suggesting that the results of the eES-FEM are much better than either FEM or ES-FEM.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] An Edge-Based Smoothed Finite Element Method with TBC for the Elastic Wave Scattering by an Obstacle
    Wu, Ze
    Yue, Junhong
    Li, Ming
    Niu, Ruiping
    Zhang, Yufei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (03) : 709 - 748
  • [22] An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems
    Z. C. He
    G. Y. Li
    Z. H. Zhong
    A. G. Cheng
    G. Y. Zhang
    G. R. Liu
    Eric Li
    Z. Zhou
    Computational Mechanics, 2013, 52 : 221 - 236
  • [23] An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems
    He, Z. C.
    Li, G. Y.
    Zhong, Z. H.
    Cheng, A. G.
    Zhang, G. Y.
    Liu, G. R.
    Li, Eric
    Zhou, Z.
    COMPUTATIONAL MECHANICS, 2013, 52 (01) : 221 - 236
  • [24] A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks
    Chen, L.
    Liu, G. R.
    Nourbakhsh-Nia, N.
    Zeng, K.
    COMPUTATIONAL MECHANICS, 2010, 45 (2-3) : 109 - 125
  • [25] A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks
    L. Chen
    G. R. Liu
    N. Nourbakhsh-Nia
    K. Zeng
    Computational Mechanics, 2010, 45 : 109 - 125
  • [26] Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems
    Long, Ting
    Huang, Can
    Hu, Dean
    Liu, Moubin
    OCEAN ENGINEERING, 2021, 225
  • [27] Exploring three-dimensional edge-based smoothed finite element method based on polyhedral mesh to study elastic mechanics problems
    Yang J.
    Xie W.
    Zhang Z.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2021, 39 (04): : 747 - 752
  • [28] The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids
    Liu, P.
    Bui, T. Q.
    Zhang, Ch.
    Yu, T. T.
    Liu, G. R.
    Golub, M. V.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 233 : 68 - 80
  • [29] A singular edge-based smoothed finite element method (ES-FEM) for crack analyses in anisotropic media
    Chen, L.
    Liu, G. R.
    Jiang, Y.
    Zeng, K.
    Zhang, J.
    ENGINEERING FRACTURE MECHANICS, 2011, 78 (01) : 85 - 109
  • [30] Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method
    Chen, Haodong
    Wang, Qingsong
    Liu, G. R.
    Wang, Yu
    Sun, Jinhua
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2016, 115 : 123 - 134