An Enriched Edge-Based Smoothed FEM for Linear Elastic Fracture Problems

被引:8
|
作者
Yang, Yongtao [1 ]
Zheng, Hong [2 ]
Du, Xiuli [2 ]
机构
[1] Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan 430071, Hubei, Peoples R China
[2] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method (FEM); edge-based smoothed FEM (ES-FEM); enriched edge-based smoothed FEM (eES-FEM); stress intensity factors (SIFs); generalized Galerkin method; FINITE-ELEMENT-METHOD; FATIGUE-CRACK PROPAGATION; NUMERICAL MANIFOLD METHOD; SINGULAR ES-FEM; MECHANICS PROBLEMS; NODAL INTEGRATION; MESHLESS METHOD; SIMULATION; PARTITION;
D O I
10.1142/S0219876217500529
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the edge-based smoothed FEM (ES-FEM) and the partition of unity, the first major items of Williams' series for the displacement field near the crack tip are incorporated in the test and trial function space, resulting in the enriched ES-FEM formulation, eEF-FEM. The eES-FEM does not differentiate any shape functions, avoiding the treatment of the 1/r singularity in computing the stiffness matrix. The complexity of computation is accordingly reduced. Meanwhile, it is pointed out that the variational foundation of the eES-FEM is the generalized Galerkin method. Typical numerical examples are analyzed, suggesting that the results of the eES-FEM are much better than either FEM or ES-FEM.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] An Edge-Based Smoothed FEM for Multiscale Electrostatic Lens Modeling
    Zhang, Yangfan
    Wang, Pengfei
    Li, Wenping
    Yang, Shunchuan
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 780 - 782
  • [2] An edge-based smoothed XFEM for fracture in composite materials
    Y. Jiang
    T. E. Tay
    L. Chen
    X. S. Sun
    International Journal of Fracture, 2013, 179 : 179 - 199
  • [3] An edge-based smoothed XFEM for fracture in composite materials
    Jiang, Y.
    Tay, T. E.
    Chen, L.
    Sun, X. S.
    INTERNATIONAL JOURNAL OF FRACTURE, 2013, 179 (1-2) : 179 - 199
  • [4] An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for thermomechanical problems
    Li, Eric
    He, Z. C.
    Xu, Xu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 66 : 723 - 732
  • [5] Analysis of elastic-plastic problems using edge-based smoothed finite element method
    Cui, X. Y.
    Liu, G. R.
    Li, G. Y.
    Zhang, G. Y.
    Sun, G. Y.
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2009, 86 (10) : 711 - 718
  • [6] An Edge-based Smoothed FEM for Accurate High-Speed Interconnect Modeling
    Zhang, Yangfan
    Yang, Shunchuan
    Su, Donglin
    2019 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2019), 2019,
  • [7] A linearization solution for elastic-plastic torsion problems by Edge-based smoothed finite element method
    Chen, Yu
    Zhang, Ruihua
    Yang, Kaijun
    Yuan, Y. F.
    Xu, Boyuan
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 67
  • [8] Analysis of transient thermo-elastic problems using edge-based smoothed finite element method
    Feng, S. Z.
    Cui, X. Y.
    Li, G. Y.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 65 : 127 - 135
  • [9] An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems
    Nguyen-Xuan, H.
    Liu, G. R.
    COMPUTERS & STRUCTURES, 2013, 128 : 14 - 30
  • [10] A mixed edge-based smoothed finite element method (MES-FEM) for elasticity
    Leonetti, Leonardo
    Garcea, Giovanni
    Nguyen-Xuan, H.
    COMPUTERS & STRUCTURES, 2016, 173 : 123 - 138