A study of quantum error correction by geometric algebra and liquid-state NMR spectroscopy

被引:18
|
作者
Sharf, Y
Cory, DG
Somaroo, SS
Havel, TF
Knill, E
Laflamme, R
Zurek, WH
机构
[1] Harvard Univ, Sch Med, BCMP, Boston, MA 02115 USA
[2] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
[3] Univ Calif Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
D O I
10.1080/002689700413604
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, this procedure does not alter normal relaxation, but rather converts the state of a 'data' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on C-13-labelled alanine, using gradient- diffusion methods to implement these idealized decoherence models. Quantum error correction in weakly polarized systems requires that the ancilla spins be prepared in a pseudo-pure state relative to the data spin, which entails a loss of signal that exceeds any potential gain through error correction. Nevertheless, this study shows that quantum coding can be used to validate theoretical decoherence mechanisms, and to provide detailed information on correlations in the underlying NMR relaxation dynamics.
引用
收藏
页码:1347 / 1363
页数:17
相关论文
共 50 条
  • [41] Amplitude-modulated decoupling pulses in liquid-state NMR
    Geen, H
    Bohlen, JM
    JOURNAL OF MAGNETIC RESONANCE, 1997, 125 (02) : 376 - 382
  • [42] SILICON AND CARBON SOLID-STATE MAS AND LIQUID-STATE NMR-STUDY OF THE POLYCONDENSATION OF HETEROPOLYSILOXANES
    BESLAND, MP
    GUIZARD, C
    HOVNANIAN, N
    LARBOT, A
    COT, L
    SANZ, J
    SOBRADOS, I
    GREGORKIEWITZ, M
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1991, 113 (06) : 1982 - 1987
  • [43] Interfacial liquid-state surface-enhanced Raman spectroscopy
    Kihoon Kim
    Hye Soo Han
    Inhee Choi
    Chiwon Lee
    SoonGweon Hong
    Sang-Hee Suh
    Luke P. Lee
    Taewook Kang
    Nature Communications, 4
  • [44] Interfacial liquid-state surface-enhanced Raman spectroscopy
    Kim, Kihoon
    Han, Hye Soo
    Choi, Inhee
    Lee, Chiwon
    Hong, SoonGweon
    Suh, Sang-Hee
    Lee, Luke P.
    Kang, Taewook
    NATURE COMMUNICATIONS, 2013, 4
  • [45] Rapid determination of γ-value and xanthate group distribution on viscose by liquid-state 1H NMR spectroscopy
    Woess, Kateryna
    Weber, Hansjoerg
    Grundnig, Peter
    Roeder, Thomas
    Weber, Hedda K.
    CARBOHYDRATE POLYMERS, 2016, 141 : 184 - 189
  • [46] New Insight into the Surface Structure of Lignin Nanoparticles Revealed by 1H Liquid-State NMR Spectroscopy
    Pylypchuk, Ievgen, V
    Linden, Par A.
    Lindstrom, Mikael E.
    Sevastyanova, Olena
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (36): : 13805 - 13812
  • [47] Comparative study on the hydrolysis kinetics of substituted ethoxysilanes by liquid-state 29Si NMR
    Liu, RL
    Xu, X
    Wu, D
    Sun, YH
    Gao, HC
    Yuan, HZ
    Deng, F
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 343 (1-3) : 61 - 70
  • [48] Coherence pathway selection by cogwheel phase cycling in liquid-state NMR
    Zuckerstaetter, Gerhard
    Mueller, Norbert
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2007, 30A (02) : 81 - 99
  • [49] NEW NMR METHOD FOR THE INVESTIGATION OF THE LOCAL DYNAMICS OF MOLECULES IN THE LIQUID-STATE
    GOLDMAN, M
    DESVAUX, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1993, 317 (06): : 749 - 756
  • [50] Insights into the Structure of Sucralfate by Advanced Solid- and Liquid-State NMR
    Hareendran, Chaithanya
    Ravindranathan, Sapna
    Ajithkumar, T. G.
    MOLECULAR PHARMACEUTICS, 2024, 21 (03) : 1390 - 1401