A study of quantum error correction by geometric algebra and liquid-state NMR spectroscopy

被引:18
|
作者
Sharf, Y
Cory, DG
Somaroo, SS
Havel, TF
Knill, E
Laflamme, R
Zurek, WH
机构
[1] Harvard Univ, Sch Med, BCMP, Boston, MA 02115 USA
[2] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
[3] Univ Calif Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
D O I
10.1080/002689700413604
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, this procedure does not alter normal relaxation, but rather converts the state of a 'data' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on C-13-labelled alanine, using gradient- diffusion methods to implement these idealized decoherence models. Quantum error correction in weakly polarized systems requires that the ancilla spins be prepared in a pseudo-pure state relative to the data spin, which entails a loss of signal that exceeds any potential gain through error correction. Nevertheless, this study shows that quantum coding can be used to validate theoretical decoherence mechanisms, and to provide detailed information on correlations in the underlying NMR relaxation dynamics.
引用
收藏
页码:1347 / 1363
页数:17
相关论文
共 50 条
  • [1] Liquid-State NMR Quantum Computing
    Vandersypen L.M.K.
    Chuang I.L.
    Suter D.
    eMagRes, 2010, 2010
  • [2] Geometric quantum gates in liquid-state NMR based on a cancellation of dynamical phases
    Ota, Yukihiro
    Goto, Yoshito
    Kondo, Yasushi
    Nakahara, Mikio
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [3] Unprecedented Carbon Signal Enhancement in Liquid-State NMR Spectroscopy
    Pinter, Gyoergy
    Schwalbe, Harald
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (29) : 8332 - 8334
  • [4] Liquid-state NMR of Fluoropolymers
    Rinaldi, Peter L.
    Baughman, Jessi
    Li, Linlin
    Li, Xiaohong
    Paudel, Liladhar
    Twum, Eric B.
    Zhang, Bo
    McCord, Elizabeth F.
    Wyzgoski, Faith J.
    EMAGRES, 2013, 2 (01): : 109 - 147
  • [5] NMR Microscopy with a high-resolution liquid-state spectroscopy probe
    Miraux, S
    Raffard, GR
    Pothuaud, L
    De Taillac, L
    Amédée, J
    Canioni, P
    Thiaudière, E
    Franconi, JM
    CONCEPTS IN MAGNETIC RESONANCE PART B-MAGNETIC RESONANCE ENGINEERING, 2005, 25B (01) : 12 - 17
  • [6] Liquid-state NMR simulations of quantum many-body problems
    Negrevergne, C
    Somma, R
    Ortiz, G
    Knill, E
    Laflamme, R
    PHYSICAL REVIEW A, 2005, 71 (03)
  • [7] LIQUID-STATE NMR QUANTUM COMPUTER: WORKING PRINCIPLE AND SOME EXAMPLES
    Kondo, Yasushi
    MOLECULAR REALIZATIONS OF QUANTUM COMPUTING 2007, 2009, 2 : 1 - 52
  • [8] Robust quantum information processing with techniques from liquid-state NMR
    Jones, JA
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1808): : 1429 - 1440
  • [9] Structural study of casein micelle using liquid-state 31P-NMR spectroscopy
    Ishii, T
    Ohba, T
    Sato, K
    Tsutsumi, A
    MILCHWISSENSCHAFT-MILK SCIENCE INTERNATIONAL, 2003, 58 (1-2): : 19 - 22
  • [10] Optical detection of liquid-state NMR
    I. M. Savukov
    S.-K. Lee
    M. V. Romalis
    Nature, 2006, 442 : 1021 - 1024