Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag

被引:34
|
作者
Yang, Jun-Mo [1 ]
Yoo, Doo-Yeol [2 ]
Kim, You-Chan [3 ]
Yoon, Young-Soo [3 ]
机构
[1] POSCO, Steel Struct Res Grp, 100 Songdogwahak Ro, Incheon 21985, South Korea
[2] Hanyang Univ, Dept Architectural Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[3] Korea Univ, Sch Civil Environm & Architectural Engn, 145 Anam Ro, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
high-strength concrete; blast furnace slag; hooked steel fiber; aspect ratio; mechanical property; material model; FLEXURAL BEHAVIOR; FLY-ASH; PERFORMANCE; BEAMS; FRACTION; SIZE;
D O I
10.1007/s40069-017-0200-0
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the effects of water-to-binder (W/B) ratio and replacement ratio of blast furnace slag (BFS) on the compressive strength of concrete were first investigated to determine an optimized mixture. Then, using the optimized high-strength concrete (HSC) mixture, hooked steel fibers with various aspect ratios and volume fractions were used as additives and the resulting mechanical properties under compression and flexure were evaluated. Test results indicated that replacement ratios of BFS from 50 to 60% were optimal in maximizing the compressive strength of steam-cured HSCs with various W/B ratios. The use of hooked steel fibers with the aspect ratio of 80 led to better mechanical performance under both compression and flexure than those with the aspect ratio of 65. By increasing the fiber aspect ratio from 65 to 80, the hooked steel fiber volume content could be reduced by 0.25% without any significant deterioration of energy absorption capacity. Lastly, complete material models of steel-fiber-reinforced HSCs were proposed for structural design from Lee's model and the RILEM TC 162-TDF recommendations.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 50 条
  • [21] Experimental Investigation on Mechanical Properties of Hybrid Steel and Polyethylene Fiber-Reinforced No-Slump High-Strength Concrete
    Yuan, Tian-Feng
    Lee, Jin-Young
    Min, Kyung-Hwan
    Yoon, Young-Soo
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2019, 2019
  • [22] MECHANICAL PROPERTIES OF HIGH STRENGTH STEEL FIBER REINFORCED CONCRETE
    Gherman, Oana Eugenia
    Constantinescu, Horia
    Gherman, Marius Calm
    NANO, BIO AND GREEN - TECHNOLOGIES FOR A SUSTAINABLE FUTURE CONFERENCE PROCEEDINGS, SGEM 2016, VOL II, 2016, : 629 - 636
  • [23] Strength and ductility of fiber-reinforced high-strength concrete columns
    Foster, SJ
    Attard, MM
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2001, 127 (01): : 28 - 34
  • [24] Significance of fiber characteristics on the mechanical properties of steel fiber-reinforced high-strength concrete at different water-cement ratios
    Khan, M. Iqbal
    Abbas, Yassir M.
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 408
  • [25] Effect of Fiber Volume Fraction on Compressive and Flexural Properties of High-Strength Steel Fiber Reinforced Concrete
    Lim, Kyung Ahn
    Joon, Seok Jang
    Jun, Yeon Yun
    Geun, Dea Yu
    Do, Hyun Yun
    Advance Materials Development and Applied Mechanics, 2014, 597 : 296 - 299
  • [26] Mechanical Properties and Absorption of High-Strength Fiber-Reinforced Concrete (HSFRC) with Sustainable Natural Fibers
    Hasan, Muttaqin
    Saidi, Taufiq
    Jamil, Muhammad
    Amalia, Zahra
    Mubarak, Azzaki
    BUILDINGS, 2022, 12 (12)
  • [27] Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete
    Ferreira, L. E. T.
    MECHANICS OF COMPOSITE MATERIALS, 2007, 43 (05) : 479 - 486
  • [28] Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete
    L. E. T. Ferreira
    Mechanics of Composite Materials, 2007, 43 : 479 - 486
  • [29] MECHANICAL-PROPERTIES OF HIGH-STRENGTH FIBER REINFORCED-CONCRETE
    WAFA, FF
    ASHOUR, SA
    ACI MATERIALS JOURNAL, 1992, 89 (05) : 449 - 455
  • [30] Effect of High Temperature on the Mechanical Properties of Steel Fiber-Reinforced Concrete
    Bezerra, Augusto C. S.
    Maciel, Priscila S.
    Correa, Elaine C. S.
    Soares Junior, Paulo R. R.
    Aguilar, Maria T. P.
    Cetlin, Paulo R.
    FIBERS, 2019, 7 (12)