Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag

被引:34
|
作者
Yang, Jun-Mo [1 ]
Yoo, Doo-Yeol [2 ]
Kim, You-Chan [3 ]
Yoon, Young-Soo [3 ]
机构
[1] POSCO, Steel Struct Res Grp, 100 Songdogwahak Ro, Incheon 21985, South Korea
[2] Hanyang Univ, Dept Architectural Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[3] Korea Univ, Sch Civil Environm & Architectural Engn, 145 Anam Ro, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
high-strength concrete; blast furnace slag; hooked steel fiber; aspect ratio; mechanical property; material model; FLEXURAL BEHAVIOR; FLY-ASH; PERFORMANCE; BEAMS; FRACTION; SIZE;
D O I
10.1007/s40069-017-0200-0
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the effects of water-to-binder (W/B) ratio and replacement ratio of blast furnace slag (BFS) on the compressive strength of concrete were first investigated to determine an optimized mixture. Then, using the optimized high-strength concrete (HSC) mixture, hooked steel fibers with various aspect ratios and volume fractions were used as additives and the resulting mechanical properties under compression and flexure were evaluated. Test results indicated that replacement ratios of BFS from 50 to 60% were optimal in maximizing the compressive strength of steam-cured HSCs with various W/B ratios. The use of hooked steel fibers with the aspect ratio of 80 led to better mechanical performance under both compression and flexure than those with the aspect ratio of 65. By increasing the fiber aspect ratio from 65 to 80, the hooked steel fiber volume content could be reduced by 0.25% without any significant deterioration of energy absorption capacity. Lastly, complete material models of steel-fiber-reinforced HSCs were proposed for structural design from Lee's model and the RILEM TC 162-TDF recommendations.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 50 条
  • [1] Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag
    Jun-Mo Yang
    Doo-Yeol Yoo
    You-Chan Kim
    Young-Soo Yoon
    International Journal of Concrete Structures and Materials, 2017, 11 : 391 - 401
  • [2] Mechanical properties of high-strength steel fiber-reinforced concrete
    Song, PS
    Hwang, S
    CONSTRUCTION AND BUILDING MATERIALS, 2004, 18 (09) : 669 - 673
  • [3] Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete
    Gao, JM
    Sun, W
    Morino, K
    CEMENT & CONCRETE COMPOSITES, 1997, 19 (04): : 307 - 313
  • [4] Mechanical properties of normal to high-strength steel fiber-reinforced concrete
    Khaloo, AR
    Kim, N
    CEMENT CONCRETE AND AGGREGATES, 1996, 18 (02): : 92 - 97
  • [5] Mechanical properties of jute fiber-reinforced high-strength concrete
    Zhang, Tiezhi
    Yin, Yong
    Gong, Yaqi
    Wang, Lijiu
    STRUCTURAL CONCRETE, 2020, 21 (02) : 703 - 712
  • [6] Properties of high-strength steel fiber-reinforced concrete beams in bending
    Qian, CX
    Patnaikuni, I
    CEMENT & CONCRETE COMPOSITES, 1999, 21 (01): : 73 - 81
  • [7] High-Strength Fiber-Reinforced Concrete Beam-Columns with High-Strength Steel
    Ibarra, Luis
    Bishaw, Birhanu
    ACI STRUCTURAL JOURNAL, 2016, 113 (01) : 147 - 156
  • [8] PROPERTIES OF FIBER-REINFORCED HIGH-STRENGTH SEMILIGHTWEIGHT CONCRETE
    BALAGURU, P
    DIPSIA, MG
    ACI MATERIALS JOURNAL, 1993, 90 (05) : 399 - 405
  • [9] Shear in steel fiber-reinforced concrete slabs reinforced with high-strength steel
    Talboys, Laura N.
    Lubell, Adam S.
    1600, American Concrete Institute (111): : 1431 - 1440
  • [10] Durability Study of High-Strength Steel Fiber-Reinforced Concrete
    Sharma, Satish
    Arora, V. V.
    Kumar, Suresh
    Daniel, Y. N.
    Sharma, Ankit
    ACI MATERIALS JOURNAL, 2018, 115 (02) : 219 - 225