Enveloping actions and Takai duality for partial actions

被引:96
|
作者
Abadie, F [1 ]
机构
[1] Univ Republica, Fac Ciencias, Ctr Matemat, Montevideo, Uruguay
关键词
crossed products by partial actions; Fell bundles; Takai duality;
D O I
10.1016/S0022-1236(02)00032-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any partial action on a topological space X is the restriction of a suitable global action, called enveloping action, that is essentially unique. In the case of C*-algebras, we prove that any partial action has a unique enveloping action up to Morita equivalence, and that the corresponding reduced crossed products are Morita equivalent. The study of the enveloping action up to Morita equivalence reveals the form that Takai duality takes for partial actions. By applying our constructions, we prove that the reduced crossed product of the reduced cross-sectional algebra of a Fell bundle by the dual coaction is liminal, postliminal, or nuclear, if and only if so is the unit fiber of the bundle. We also give a non-commutative generalization of the well-known fact that the integral curves of a vector field on a compact manifold are defined on all of R. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:14 / 67
页数:54
相关论文
共 50 条
  • [21] Duality for Group Actions on Semialgebras
    Sharma, Ram Parkash
    Anu
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2015, 39 (04) : 567 - 581
  • [22] Duality for the Logic of Quantum Actions
    Bergfeld, Jort M.
    Kishida, Kohei
    Sack, Joshua
    Zhong, Shengyang
    STUDIA LOGICA, 2015, 103 (04) : 781 - 805
  • [23] DUALITY FOR GROUPOID (CO)ACTIONS
    Paques, Antonio
    Flores, Daiana
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) : 637 - 663
  • [24] Duality group actions on fermions
    Tony Pantev
    Eric Sharpe
    Journal of High Energy Physics, 2016
  • [25] Partial actions of groups and actions of inverse semigroups
    Exel, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) : 3481 - 3494
  • [26] On partial actions and groupoids
    Abadie, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (04) : 1037 - 1047
  • [27] Description of partial actions
    Cortes, Wagner
    Marcos, Eduardo N.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (02): : 929 - 939
  • [28] Partial actions and subshifts
    Dokuchaev, M.
    Exel, R.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) : 5038 - 5106
  • [29] Decomposable partial actions
    Abadie, Fernando
    Gardella, Eusebio
    Geffen, Shirly
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (07)
  • [30] First-order actions and duality
    Gaona, Alejandro
    Garcia, J. Antonio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (04): : 851 - 867