Coupled Multiple Dictionary Learning Based on Edge Sharpness for Single-Image Super-Resolution

被引:0
|
作者
Ahmed, Junaid [1 ]
Klette, Reinhard [2 ]
机构
[1] Sukkur Inst Business Adm, Sukkur, Pakistan
[2] Auckland Univ Technol, Auckland, New Zealand
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article a new strategy for single-image super-resolution is proposed. A selective sparse coding strategy based on patch sharpness is assumed to be invariant for patch resolution. This sharpness criterion is used at training stage to classify image patches into different clusters. It is suggested that the use of coupled dictionary learning, with a mapping function can improve the representation quality. By this strategy clustered dictionaries are designed along with a mapping function for each cluster which can provide the coupling link between low-resolution and high-resolution image patches. During the reconstruction, image patch sharpness is used as a criterion for the selection of a clustered dictionary and the mapping function. The high-resolution patches are recovered by high-resolution cluster dictionary atoms and the mapping function with sparse representation coefficients from low resolution patches. The algorithm is tested over a set of benchmark images from different data sets. Peak-signal-to-noise ratio and structural-similarity-index measures indicate that the given algorithm is competitive in general with existing baseline algorithms. The proposed algorithm performs better for images with high-frequency components.
引用
收藏
页码:3838 / 3843
页数:6
相关论文
共 50 条
  • [21] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [22] An adaptive regression based single-image super-resolution
    Hou, Mingzheng
    Feng, Ziliang
    Wang, Haobo
    Shen, Zhiwei
    Li, Sheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28231 - 28248
  • [23] CONVEX DICTIONARY LEARNING FOR SINGLE IMAGE SUPER-RESOLUTION
    Ding, Pak Lun Kevin
    Li, Baoxin
    Chang, Kan
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4058 - 4062
  • [24] An adaptive regression based single-image super-resolution
    Mingzheng Hou
    Ziliang Feng
    Haobo Wang
    Zhiwei Shen
    Sheng Li
    Multimedia Tools and Applications, 2022, 81 : 28231 - 28248
  • [25] A Practical Contrastive Learning Framework for Single-Image Super-Resolution
    Wu, Gang
    Jiang, Junjun
    Liu, Xianming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15834 - 15845
  • [26] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32
  • [27] Coarse-to-Fine Learning for Single-Image Super-Resolution
    Zhang, Kaibing
    Tao, Dacheng
    Gao, Xinbo
    Li, Xuelong
    Li, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (05) : 1109 - 1122
  • [28] Learning Hierarchical Decision Trees for Single-Image Super-Resolution
    Huang, Jun-Jie
    Siu, Wan-Chi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 937 - 950
  • [29] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pattern Recognition and Image Analysis, 2022, 32 : 11 - 32
  • [30] A Practical Contrastive Learning Framework for Single-Image Super-Resolution
    Wu, Gang
    Jiang, Junjun
    Liu, Xianming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15834 - 15845