Maximum likelihood parameter estimation for latent variable models using sequential Monte Carlo

被引:0
|
作者
Johansen, Adam [1 ]
Doucet, Arnaud [1 ]
Davy, Manuel [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present a sequential Monte Carlo (SMC) method for maximum likelihood (ML) parameter estimation in latent variable models. Standard methods rely on gradient algorithms such as the Expectation-Maximization (EM) algorithm and its Monte Carlo variants. Our approach is different and motivated by similar considerations to simulated annealing (SA); that is we propose to sample from a sequence of artificial distributions whose support concentrates itself on the set of ML estimates. To achieve this we use SMC methods. We conclude by presenting simulation results on a toy problem and a nonlinear non-Gaussian time series model.
引用
收藏
页码:3091 / 3094
页数:4
相关论文
共 50 条
  • [31] Parameter estimation from big data using a sequential monte carlo sampler
    Green, P. L.
    Maskell, S.
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 4111 - 4119
  • [32] A Comparison of Maximum Likelihood and Bayesian Estimation for Polychoric Correlation Using Monte Carlo Simulation
    Choi, Jaehwa
    Kim, Sunhee
    Chen, Jinsong
    Dannels, Sharon
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2011, 36 (04) : 523 - 549
  • [33] Quasi-Maximum Likelihood Estimation For Latent Variable Models With Mixed Continuous And Polytomous Data
    Eickhoff, Jens C.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (02) : 473 - 481
  • [34] Ultrasonic Parameter Estimation Using the Maximum Likelihood Estimation
    Laddada, S.
    Lemlikchi, S.
    Djelouah, H.
    Si-Chaib, M. O.
    2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 200 - +
  • [35] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [36] Statistical modeling of ecosystem respiration using eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models
    Richardson, AD
    Hollinger, DY
    AGRICULTURAL AND FOREST METEOROLOGY, 2005, 131 (3-4) : 191 - 208
  • [37] Beta spatial linear mixed model with variable dispersion using Monte Carlo maximum likelihood
    Melo, Oscar O.
    Melo, Carlos E.
    Mateu, Jorge
    STATISTICA NEERLANDICA, 2016, 70 (01) : 47 - 76
  • [38] Maximum Likelihood Carrier Phase Estimation Based on Monte Carlo Integration
    Rios-Muller, Rafael
    Bitachon, Bertold Ian
    43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), 2017,
  • [39] MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED DIFFUSION PROCESSES
    Beskos, Alexandros
    Papaspiliopoulos, Omiros
    Roberts, Gareth
    ANNALS OF STATISTICS, 2009, 37 (01): : 223 - 245
  • [40] A Monte-Carlo algorithm for maximum likelihood estimation of variance components
    Xu, S
    Atchley, WR
    GENETICS SELECTION EVOLUTION, 1996, 28 (04) : 329 - 343