Supervised classification techniques for prediction of mortality in adult patients with sepsis

被引:19
|
作者
Rodriguez, Andres [1 ]
Mendoza, Deibie [2 ]
Ascuntar, Johana [3 ]
Jaimes, Fabian [3 ,4 ,5 ]
机构
[1] Univ Nacl Colombia, Medellin, Colombia
[2] Univ Antioquia, Sch Med, Medellin, Colombia
[3] Univ Antioquia, GRAEPIC Clin Epidemiol Acad Grp, Grp Acad Epidemiol Clin, Medellin, Colombia
[4] Univ Antioquia, Dept Internal Med, Medellin, Colombia
[5] Hosp San Vicente Fdn, Medellin, Colombia
来源
关键词
Sepsis; In-hospital mortality; Artificial neural networks; Vector support machines; Random Forest; INTENSIVE-CARE-UNIT; LOGISTIC-REGRESSION; NEURAL-NETWORKS; HOSPITAL MORTALITY; ACCURACY; CRITERIA; OUTCOMES;
D O I
10.1016/j.ajem.2020.09.013
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background: Sepsis mortality is still unacceptably high and an appropriate prognostic tool may increase the accuracy for clinical decisions. Objective: To evaluate several supervised techniques of Artificial Intelligence (AI) for classification and prediction of mortality, in adult patients hospitalized by emergency services with sepsis diagnosis. Methods: Secondary data analysis of a prospective cohort in three university hospitals in Medellin, Colombia. We included patients >18 years hospitalized for suspected or confirmed infection and any organ dysfunction according to the Sepsis-related Organ Failure Assessment. The outcome variable was hospital mortality and the prediction variables were grouped into those related to the initial clinical treatment and care or to the direct measurement of physiological disturbances. Four supervised classification techniques were analyzed: the C4.5 Decision Tree, Random Forest, artificial neural networks (ANN) and support vector machine (SVM) models. Their performance was evaluated by the concordance between the observed and predicted outcomes and by the discrimination according to AUC-ROC. Results: A total of 2510 patients with a median age of 62 years (IQR = 46-74) and an overall hospital mortality rate of 11.5% (n = 289). The best discrimination was provided by the SVM and ANN using physiological variables, with an AUC-ROC of 0.69 (95%CI: 0.62; 0.76) and AUC-ROC of 0.69 (95%CI: 0.61; 0.76) respectively. Conclusion: Deep learning and AI are increasingly used as support tools in clinical medicine. Their performance in a syndrome as complex and heterogeneous as sepsis may be a new horizon in clinical research. SVM and ANN seem promising for improving sepsis classification and prognosis. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:392 / 397
页数:6
相关论文
共 50 条
  • [21] DERIVATION OF A MORTALITY PREDICTION MODEL IN CRITICAL CARE PATIENTS WITH CIRRHOSIS AND SEPSIS
    Serafim, Laura Piccolo
    Simonetto, Douglas A.
    Choi, Dae Hee
    Weister, Timothy J.
    Hanson, Andrew C.
    Kamath, Patrick S.
    Gajic, Ognjen
    de Moraes, Alice Gallo
    SHOCK, 2024, 61 (03): : 382 - 386
  • [22] Prediction of sepsis mortality in ICU patients using machine learning methods
    Gao, Jiayi
    Lu, Yuying
    Ashrafi, Negin
    Domingo, Ian
    Alaei, Kamiar
    Pishgar, Maryam
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [23] Development and validation of a prediction model for in-hospital mortality in patients with sepsis
    Shi, Wen
    Xie, Mengqi
    Mao, Enqiang
    Yang, Zhitao
    Zhang, Qi
    Chen, Erzhen
    Chen, Ying
    NURSING IN CRITICAL CARE, 2025, 30 (03)
  • [24] Can We Improve Mortality Prediction in Patients with Sepsis in the Emergency Department?
    Luka, Sonia
    Golea, Adela
    Vesa, Stefan Cristian
    Leahu, Crina-Elena
    Zaganescu, Raluca
    Ionescu, Daniela
    MEDICINA-LITHUANIA, 2024, 60 (08):
  • [25] Development and validation of an interpretable machine learning for mortality prediction in patients with sepsis
    He, Bihua
    Qiu, Zheng
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [26] Sepsis and prediction of in-hospital mortality
    Freund, Yonathan
    Ortega, Mar
    EMERGENCIAS, 2017, 29 (02): : 79 - 80
  • [27] Prediction of sepsis mortality in the mouse model
    Bolgos, GL
    Nemzek, JA
    Siddiqui, J
    Shin, J
    Remick, DG
    FASEB JOURNAL, 2001, 15 (04): : A588 - A588
  • [28] AN OVERVIEW OF MORTALITY RISK PREDICTION IN SEPSIS
    BARRIERE, SL
    LOWRY, SF
    CRITICAL CARE MEDICINE, 1995, 23 (02) : 376 - 393
  • [29] Mortality risk prediction of sepsis - Reply
    Barriere, SL
    Lowry, SF
    CRITICAL CARE MEDICINE, 1996, 24 (01) : 181 - 181
  • [30] MORTALITY RISK PREDICTION IN SEPSIS - REPLY
    BARRIERE, SL
    LOWRY, SF
    CRITICAL CARE MEDICINE, 1995, 23 (10) : 1793 - 1794