Robust fractional order differentiators using generalized modulating functions method

被引:51
|
作者
Liu, Da-Yan [1 ,2 ]
Laleg-Kirati, Taous-Meriem [2 ]
机构
[1] Univ Orleans, PRISME EA 4229, INSA Ctr Val Loire, F-18022 Bourges, France
[2] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
关键词
Fractional order differentiator; Riemann-Liouville derivative; Generalized modulating functions method; Noise; CRONE CONTROL; DERIVATIVES; SCHEME;
D O I
10.1016/j.sigpro.2014.05.016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:395 / 406
页数:12
相关论文
共 50 条
  • [41] ANALOG REALIZATIONS OF FRACTIONAL-ORDER INTEGRATORS/DIFFERENTIATORS A Comparison
    Maione, Guido
    ICINCO 2009: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 3, 2009, : 184 - 189
  • [42] New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions
    Bhrawy, Ali H.
    Alhamed, Yahia A.
    Baleanu, Dumitru
    Al-Zahrani, Abdulrahim A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) : 1137 - 1157
  • [43] Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions
    Chen, Yiming
    Sun, Yannan
    Liu, Liqing
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 847 - 858
  • [44] New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions
    Ali H. Bhrawy
    Yahia A. Alhamed
    Dumitru Baleanu
    Abdulrahim A. Al-Zahrani
    Fractional Calculus and Applied Analysis, 2014, 17 : 1137 - 1157
  • [45] A generalized approach for robust topology optimization using the first-order second-moment method for arbitrary response functions
    Micah Kranz
    Julian Kajo Lüdeker
    Benedikt Kriegesmann
    Structural and Multidisciplinary Optimization, 2023, 66
  • [46] A generalized approach for robust topology optimization using the first-order second-moment method for arbitrary response functions
    Kranz, Micah
    Luedeker, Julian Kajo
    Kriegesmann, Benedikt
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (05)
  • [47] Efficient Design of Discrete Fractional-Order Differentiators Using Nelder–Mead Simplex Algorithm
    K. P. S. Rana
    Vineet Kumar
    Yashika Garg
    Sreejith S. Nair
    Circuits, Systems, and Signal Processing, 2016, 35 : 2155 - 2188
  • [48] OPTIMAL FRACTIONAL INTEGRATION PRECONDITIONING AND ERROR ANALYSIS OF FRACTIONAL COLLOCATION METHOD USING NODAL GENERALIZED JACOBI FUNCTIONS
    Huang, Can
    Jiao, Yujian
    Wang, Li-Lian
    Zhang, Zhimin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3357 - 3387
  • [49] Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions
    School of Mathematical Sciences, Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, Xiamen University, Fujian
    361005, China
    不详
    200234, China
    不详
    200240, China
    不详
    637371, Singapore
    不详
    100193, China
    不详
    MI
    48202, United States
    SIAM J Numer Anal, 6 (3357-3387):
  • [50] An improved pseudo-state estimator for a class of commensurate fractional order linear systems based on fractional order modulating functions
    Wei, Yan-Qiao
    Liu, Da-Yan
    Boutat, Driss
    Chen, Yi-Ming
    SYSTEMS & CONTROL LETTERS, 2018, 118 : 29 - 34