A threshold segmentation method based on fuzzy C-means clustering algorithm and multi-histogram

被引:0
|
作者
Wang, Zhenhua [1 ]
Chen, Jie [1 ]
Dou, Lihua [1 ]
机构
[1] Beijing Inst Technol, Dept Automat Control, Beijing 100081, Peoples R China
关键词
image segmentation; FCM; multi-histogram; MHFCM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image threshholding techniques are the important content of image segmentation, one typical algorithm of which is Fuzzy C-Means (FCM) clustering segmentation algorithm. The conventional FCM clustering algorithm is based only on special information and ignores the spatial distribution of pixels in an image. Large numbers of improved methods are put forward to overcome this limitation, but all of them increased the computation cost. A new method based on FCM algorithm and multi-histogram (MHFCM) is proposed in this paper, which utilizes the special and spatial information adequately by analyzing many kinds of characteristics among different intensity levels in an image. The importing of Multi-characteristic makes the selection of thresholds possible and easy. Experimental results prove that this method can improve the segmentation effects obviously and decrease the computation cost greatly.
引用
收藏
页码:698 / 702
页数:5
相关论文
共 50 条
  • [21] Lie Group Fuzzy C-means Clustering Algorithm for Image Segmentation
    Sun, Hao-Cheng
    Liu, Li
    Li, Fan-Zhang
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (10): : 4806 - 4825
  • [22] Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation
    Zhao Zaixin
    Cheng Lizhi
    Cheng Guangquan
    IET IMAGE PROCESSING, 2014, 8 (03) : 150 - 161
  • [23] An Enhanced Fuzzy C-Means Clustering (ECFMC) Algorithm for Spot Segmentation
    Nagesh, A. Sri
    Varma, G. P. Saradhi
    Govardhan, A.
    Babu, B. Raveendra
    SIGNAL PROCESSING, IMAGE PROCESSING AND PATTERN RECOGNITION, 2011, 260 : 320 - +
  • [24] Developing Modified Fuzzy C-Means Clustering Algorithm for Image Segmentation
    Aljebory, Karim M.
    Mohammed, Thabit Sultan
    2018 15TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES (SSD), 2018, : 1221 - 1227
  • [25] Segmentation of Lip Images by Modified Fuzzy C-means Clustering Algorithm
    Sudhavani, G.
    Sathyaprasad, K.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2009, 9 (04): : 187 - 191
  • [26] A Fuzzy C-Means Clustering Algorithm Based on Spatial Context Model for Image Segmentation
    Jindong Xu
    Tianyu Zhao
    Guozheng Feng
    Mengying Ni
    Shifeng Ou
    International Journal of Fuzzy Systems, 2021, 23 : 816 - 832
  • [27] The image segmentation algorithm of colorimetric sensor array based on fuzzy C-means clustering
    Xu, Huan Chun
    Hou, Rui
    Liu, Lan
    Cai, Jiao Yong
    Chen, Ji Gang
    Liu, Jia Yue
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (04) : 3605 - 3613
  • [28] An optimized SVM based possibilistic fuzzy c-means clustering algorithm for tumor segmentation
    Kollem, Sreedhar
    Reddy, Katta Ramalinga
    Rao, Duggirala Srinivasa
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (01) : 409 - 437
  • [29] Fuzzy C-means Clustering Image Segmentation Algorithm Based on Hidden Markov Model
    Ru Xu
    Mobile Networks and Applications, 2022, 27 : 946 - 954
  • [30] A Fuzzy C-Means Clustering Algorithm Based on Spatial Context Model for Image Segmentation
    Xu, Jindong
    Zhao, Tianyu
    Feng, Guozheng
    Ni, Mengying
    Ou, Shifeng
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (03) : 816 - 832